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Abstract

A helicopter height velocity (HV) diagram was analytically constructed using op-

timal control techniques. A three degree of freedom, point-mass, dynamic model was

developed and validated with flight test data. An induced velocity calculation was in-

corporated which addressed the affects of vortex ring state. The problem was posed as

an open final time, constrained initial state, constrained final state problem, with the

objective function as a weighted sum of the initial altitude and quadratic controls.

This formulation was solved using direct pseudo-spectral collocation and adaptive

mesh refinement as implemented by the GPOPS-II® software suite. Proper adjust-

ment of path constraints was crucial in achieving solutions which were comparable

with flight test data. Results compare favorably with flight test data and previous

analytical HV diagrams.
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ANALYTICAL DETERMINATION OF A HELICOPTER HEIGHT VELOCITY

DIAGRAM

I. Introduction

1.1 Research Overview

If a helicopter loses all engine power, a maneuver called an autorotation is used to

descend and safely land the aircraft. Many helicopters utilize two engines to mitigate

the chance of complete power loss, but at certain conditions, single-engine flight may

also result in an involuntary descent. The combinations of altitude (above the ground)

and airspeed which provide insufficient energy to land the aircraft are depicted as a

Height-Velocity (HV) diagram. The analytical determination of the low speed HV

diagram using optimal control theory is the subject of this research. The present

chapter outlines background information on the HV diagram, a basic description of

the case study helicopter, research objectives and a thesis overview.

1.2 Single-Engine Flight

Most military helicopters incorporate two engines to reduce the chance of a com-

plete loss of power. Complete power loss is relatively uncommon, but can occur due

to combat damage, fuel starvation, fuel contamination, fire, or in some designs, drive-

shaft failure. More probable is the failure of a single engine, where the power available

to drive the main rotor is approximately halved. Common causes of engine failure

include fuel contamination, fuel starvation, material failure of a turbine component,

compressor stall or foreign object ingestion. Ideally, in the case of single-engine fail-
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ure, the remaining engine provides sufficient power for all flight regimes. However, for

many helicopters, single-engine failure results in sufficient power at certain airspeeds

but a power deficit at other airspeeds.

A helicopter has a power bucket like the drag bucket of a fixed wing aircraft: at

high airspeeds, the increased drag on the airframe and rotor demands higher power,

and at low airspeeds, the re-ingestion of rotor tip vortices in the flow field also in-

creases the power required by the main rotor. Hence, after failure of a single engine,

the aircraft is flown at the most efficient airspeed. For landing however, the helicopter

must decelerate to an airspeed where power required exceeds power available. This

power deficit is overcome by initiating a rapid descent and using the vertical compo-

nent of the helicopter velocity as an energy source to drive the main rotor, keeping it

turning at a useful angular velocity.

Therefore, the entry flight conditions for a single-engine failure may greatly influ-

ence the outcome of a single-engine landing. For a particular gross weight and air

density, these entry flight conditions are functions of height above the ground and

airspeed, combinations of potential and kinetic energy which can be used to effect a

single-engine landing. Certain combinations of gross weight, air density, airspeed and

altitude provide insufficient energy for landing the aircraft within structural limita-

tions.

1.3 The Single-Engine HV Diagram

It is common practice to publish a graphical depiction of unsafe flight conditions

as an HV diagram. Combinations of unsafe altitude and velocity are charted for a

particular air density and aircraft gross weight. An example HV diagram is shown

in Figure 1.1. A complete HV diagram depicts both a low speed and a high speed

unsafe region, but this research was only concerned with the low speed portion of the
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diagram. Henceforth, the term HV diagram refers to the low speed portion only.

The combinations of altitude and airspeed which lack sufficient energy for a partial

power landing are shaded and labeled as an unsafe or avoid region. For a twin-engine

helicopter, an HV diagram is needed for loss of a single engine and loss of both

engines, since the same concept of insufficient energy for landing also applies to an

autorotation following complete power loss. The first purpose of the HV diagram is to

inform the pilot. The HV diagram does not preclude operations in the unsafe region,

but advertises the severe consequences of a single or dual engine failure in certain

flight conditions. The second purpose of the HV diagram is in the design of terminal

flight profiles. Takeoff and landing profiles are generally standardized to remain

clear of the unsafe flight conditions during normal operations, so the HV diagram

has a significant impact on take-off and landing profiles for airports, oil rigs, ships

and rooftop landing pads. Determination of the HV curves is commonly completed

analytically and the analytical solution is validated by flight test. Obviously, flight

test in which simulated engine failures determine the boundary between safe and

unsafe flight regimes involves inherent risk. Given this risk, and since flight test is

expensive by nature, the analytical solution is often validated at a few points and

then extrapolated to many different conditions. Hence, greater fidelity is continually

sought for analytical construction of the HV diagram.
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Figure 1.1. Representative Height Velocity Diagram

1.4 Research Catalyst

Many helicopter manufacturing companies have developed analysis programs to

analyze performance, stability and control aspects of rotorcraft flight. Among other

calculations, these programs are used to conduct analytical evaluations of the HV

region. The Naval Air Systems Command (NAVAIR) contains program offices which

manage all aspects of Navy and Marine Corps aircraft including acquisition, flight

test and airworthiness. NAVAIR verifies data obtained from aircraft manufacturers,

including HV diagrams. In contrast to the major helicopter manufacturers, NAVAIR

did not possess an analytical program to calculate an HV diagram. A need existed to

verify manufacturers HV data not only through flight test but with analytical means.

This investigation supports an effort to provide NAVAIR with means to analytically
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calculate the single-engine HV diagram of a traditional helicopter.

1.5 Case Study Aircraft

The AH-1Z Cobra, shown in Fig. 1.2, was selected as the case study helicopter

for this thesis due to familiarity with the aircraft and since flight test data for the

AH-1Z was available from NAVAIR.

The AH-1Z is an attack helicopter manufactured by Bell Helicopter Textron,

equipped with two T700-GE-401 (or 401C) engines, and a four blade, soft in-plane,

bearingless, composite main rotor. The tail rotor is composed of two stiff in-plane

teetering rotors with blade spacing of 90 degrees. The forward fuselage provides tan-

dem seating for a crew of two and provides support for a target sight system sensor

and a turret mount for an M197 20mm cannon. The aircraft uses skid landing gear.

The tail boom is a semi-monocoque structure, mounting a tapered, cambered verti-

cal fin, the tail rotor, and a tapered, cambered horizontal stabilizer. The horizontal

stabilizer is of variable angle of incidence and is actuator controlled to reduce main

rotor yoke moments. Maximum gross weight is 18,500 pounds and maximum air-

speed is 200 knots calibrated airspeed. The United States Marine Corps utilizes the

AH-1Z to provide offensive air support, armed escort and airborne supporting arms

coordination. A detailed description of the AH-1Z may be found in [3].

The AH-1Z carries a variety of ordnance on six hardpoints mounted on a stub-

wing. For this thesis, the configuration considered was the clean configuration, with

no ordnance mounted under the stubwing. Of note, during the design of the AH-

1Z, several major changes were made, including one engine inoperable (OEI) engine

rating and optimal main rotor speed. The flight test data available for the AH-1Z

was published for an early prototype using the older engine rating and rotor speed.

Therefore, aircraft input parameters in this thesis were matched to those used in
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Figure 1.2. The Bell Textron AH-1Z Cobra

available test reports, and the older engine power rating and main rotor speed were

utilized.

1.6 Research Objectives

Analytical means were sought to accurately calculate the HV diagram of a tra-

ditional, single rotor helicopter in a single-engine failure scenario. The following

elements supported this overall objective:

• Develop a dynamic model of a helicopter

• Utilize pseudo-spectral optimal control software to provide optimal state and con-
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trol trajectories for the descending helicopter

• Incorporate effects of pilot technique during single-engine failure events.

• Develop a solution procedure which can be easily adapted to different aircraft.

• Determine the entire HV diagram by solving the optimal control problem for dif-
ferent initial conditions.

• Examine the effects of improved induced velocity models.

To provide utility for future real-time optimization efforts, a dynamic model of

the helicopter and an optimization scheme were sought to match flight test data with

minimum computation time. A program using software available to NAVAIR, and

capable of easy modification for different airframes was desired.

1.7 Thesis Overview

Chapter 1 provided thesis objectives, background HV diagram information, the

research catalyst, and a brief description of the case study aircraft. Chapter 2 dis-

cusses previous research in the field of HV determination and an overview of dynamic

optimization theory. Chapter 3 discusses research methodology used in this thesis,

including the helicopter dynamic model and the method by which dynamic optimiza-

tion was used to generate an HV curve. Chapter 4 presents and discusses the results

of the HV diagram solution as applied to the AH-1Z. Chapter 5 draws conclusions

and discusses recommendations for future research.
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II. Background

2.1 Chapter Overview

This chapter examines previous research, flight test and software development

which attempted to predict the Height-Velocity (HV) diagram. The analytical deter-

mination of the HV diagram was first empirically accomplished, but since the 1970s,

HV diagrams have been determined using optimal control and constructing the HV

diagram from optimal trajectories. Early HV research focused on a complete power

loss and the HV diagram for autorotation. For a detailed description of autorota-

tion refer to Section 8.5 of reference [4]. As multi-engine helicopters became more

prevalent, research advanced to the single-engine HV diagram solution. This chapter

discusses early HV flight tests, semi-empirical HV solutions and the prediction of the

HV diagram using optimal control. Johnson [2] first solved a non-linear, optimal

control trajectory of helicopter autorotation in 1977. Johnson’s research is used as a

framework to discuss subsequent research advancements.

2.2 Height Velocity Flight Tests and Empirical Prediction

2.2.1 Early HV Flight Tests

During the period 1965 to 1968, the Aircraft Development Service of the Federal

Aviation Administration (FAA) completed an extensive flight test study of the heli-

copter HV diagram. Gross weight and density altitude were varied for three different

single-engine helicopters, and the effect on the HV curves was reported by Hanley and

Devore [5] in 1965. Hanley and Devore demonstrated that HV data from different,

single-engine helicopters lay on a single curve, after the data was reduced to non-

dimensional form. The report included a method for calculating the HV diagram,

largely based on finding a critical velocity and critical height (the knee point of the
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HV curve) and then spot checking the remainder of the curve with a standardized

pilot technique. Since this early flight test effort, many test projects were conducted,

mostly by the U.S. Army, to investigate different aircraft and the importance of dif-

ferent variables on the HV diagram.

2.2.2 Semi-Empirical Method

In 1968, Pegg [6] used the data from the FAA flight tests and provided a more

extensively documented, semi-empirical method for determining the autorotative HV

diagram. Pegg’s method involved determining the low hover point, high hover point

and the knee point of the HV diagram. Standardized equations were used to generate

the HV curve from these three points. Pegg’s semi-empirical method, though based

on data from three different helicopters, included some assumptions, notably, that

the critical height at the knee point was constant at 95 feet. Although more robust

methods were needed to capture flight dynamics not observed during the Hanley

tests, Pegg’s method has been referenced for many years and notably was used by

the Helicopter Dynamic Performance (HDP) program [7] as a starting guess for HV

calculations. Since Pegg’s research, different solution methods have proven to more

accurately predict rotorcraft aeromechanics of the descending helicopter. The most

prevalent solution has been accomplished using optimal control.

2.3 Optimal Control

Optimal control is founded on the calculus of variations, has roots in classical

control and non-linear programming, and was made practical for the helicopter HV

problem by the digital computer. The dynamic optimization procedure is to frame

a problem by defining certain design variables as states and others as controls. The

governing dynamic equations which relate various states and the controls are written
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as differential equations. Constraints on initial, terminal and path values of the

states and controls are written as algebraic equations. An expression is chosen to

be minimized (or maximized). This expression is termed the performance measure

or cost function. The dynamic optimization solution is the set of control and state

trajectories which minimize the performance measure, while simultaneously satisfying

the dynamics equations and constraints.

At the heart of optimal control theory are the first-order necessary conditions for

optimality, known as the Karush-Kuhn-Tucker conditions. These can be found in any

reliable resource on optimal control and are very clearly developed and discussed in

texts by Kirk, [8] and Bryson, [9]. In basic terms for a function of several variables,

the first order conditions state that an optimal point must lie at a location where

the gradient of the function is zero. As applied to the optimization problem, an

augmented objective function, or Lagrangian, is formed by appending the constraint

equations to the objective function using Lagrange multipliers and the first order

necessary conditions are shown in Table 2.1.

Table 2.1. First-Order Necessary Conditions for Optimality

1.) Lagrangian stationary with respect to all design variables
2.) Lagrangian stationary with respect to all Lagrange multipliers
3.) Active inequality constraints must be feasible
4.) Inequality constraint Lagrange multipliers must be non-negative
5.) Gradients of the active constraints must be linearly independent

If this approach is extended to a dynamic optimization problem, what was an

objective function (or cost function) is instead an objective functional, each optimal

design variable is an optimal function, and the Lagrange multipliers are also functions

usually termed co-states. Boundary conditions for the design variable and co-state

functions are translated into transversality conditions. A list of tranvsersality condi-

tions for different classes of optimization problems can be found in Table 5-1 of [8].
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Solutions for the necessary conditions of a dynamic optimization problem for all but

the most trivial cases are normally accomplished using numerical methods.

Betts [10] published an excellent survey of numerical optimal control methods

which includes basic theory along with different numerical methods, their strengths,

weaknesses and historical applications. Rao [1] published a separate survey and ad-

dresses many of the advances and areas of focus since the turn of the century. Ac-

cording to Betts, the two generally recognized frameworks for pursuing solutions to

the optimal control problem are the indirect method and the direct method [10].

Also, since many numerical optimal control methods utilize some version of nonlin-

ear programming (NLP), NLP is discussed before considering the different classes of

numerical methods.

2.3.1 Nonlinear Programming

Nonlinear programming (or nonlinear optimization) is the numerical extension of

classical Lagrangian optimization and involves the determination of an optimal set

of design variables which minimize an objective function subject to a set of algebraic

constraints. The problem is discretized into a series of nodes. Values for parame-

ters and their derivatives are calculated at each node. As the number of nodes is

increased, the discrete NLP equations begin to more closely approximate the first

order conditions for optimality [10]. The NLP problem may be termed dense if a

large percentage of the derivatives are non-zero, or sparse if a large percentage of the

derivatives are zero.

An important gradient based, NLP method using Sequential Quadratic Program-

ming (SQP) techniques was codified in the Sparse Nonlinear Optimizer (SNOPT)

algorithm by Gill, Murray and Saunders [11]. SNOPT is designed for large-scale,

nonlinear, sparse optimization problems and has been successfully used for the HV
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problem in several instances.

2.3.2 Indirect Solutions

The calculus of variations provides the classical, or indirect, solution to the dy-

namic optimization problem. Lagrange multipliers (or co-states) are utilized to ap-

pend the constraints to the cost function. The resulting augmented function is termed

the Hamiltonian. The Hamiltonian is partially differentiated with respect to the states

to obtain the adjoint or co-state equations. The control equations are obtained by

differentiating with respect to the controls. The final time or final condition of the

problem yields an algebraic equation, termed the transversality condition from which

final values of the co-states can be determined. This resulting system of equations is

coupled with the constraint equations to obtain the Euler-Lagrange equations. The

end result is a two point or multi-point boundary value problem: initial conditions are

available for the states, but only final values are available for the co-states. Several

different numerical techniques are available to compute an indirect solution including

indirect shooting [12], gradient restoration [13], and indirect collocation [14]. In some

cases, analytical indirect solutions are also possible.

2.3.3 Direct Solutions

Direct methods do not require the analytical derivatives of the Hamiltonian used

in the Euler-Lagrange equations. Rather, a direct optimal control method discretizes

the dynamics and constraint equations, and transcribes the problem into a NLP

problem [10]. A helpful diagram developed by Rao in [1] and shown in Fig. 2.1

depicts the three major subcomponents of numerical optimal control and differences

in utilization by the direct and indirect methods.

Direct methods can be broken down by whether only the controls are parameter-
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Figure 2.1. Comparison of Direct and Indirect Numerical Methods [1]

ized or whether the controls and states are parameterized. Direct shooting and direct

multiple shooting are techniques in which only the controls are parameterized. In

collocation methods, both the controls and states are parameterized in a collection

of grid points known as a mesh. The latter method is further subdivided by local

collocation and global collocation [1].

2.4 The Hamiltonian

Introduced earlier in the context of indirect methods, the continuous Hamiltonian

for an optimal control problem is given by the sum of the running cost with the

product of the co-state and state derivative vectors [8]. An important result of the

calculus of variations is that the Hamiltonian, evaluated on an extremal trajectory, is

constant for all time if the Hamiltonian is not an explicit function of time. Further-

more, if the terminal cost is not an explicit function of time, the Hamiltonian will be

zero [8]. For optimal control problems where the Hamiltonian is linear with respect

to the controls, part or all of the optimal trajectory lies on one or more singular arcs.

Pontryagin’s Minimum Principle must be added as a necessary condition for opti-

mality in such situations, which states that the optimal control must minimize the

Hamiltonian [8]. Numerical optimization methods (including direct methods) provide

discrete solutions for the co-states which can be utilized to compute the Hamiltonian

once an optimal solution is obtained.

13



2.5 The HV Diagram Determined with Optimal Control

Johnson was the first to apply optimal control theory to the non-linear helicopter

dynamics equations [2]. Johnson’s research was motivated by a desire to compare au-

torotative characteristics of different designs, and not directly concerned with finding

the HV diagram, but the methods were easily adaptable for an HV diagram analysis.

In this early optimal control solution of helicopter descent, many important elements

were incorporated:

• Rotor stall effects

• Vortex ring state effects

• Ground effect

• First-order model of engine lag as power available decays to zero

• Delay in simulated pilot response

With the exception of rotor stall, each of these elements are examined in this

thesis and remain important aspects of a dynamic optimization solution. Johnson

neglected body attitudes and moments with a point mass model, and only modeled

motion in the x-z plane. Dynamic equations were constructed from the force diagram

shown in Fig. 2.2. Control variables were the vertical and horizontal components

of the thrust coefficient. The highly non-linear relationship between rotor thrust,

power and inflow was modeled using momentum theory and empirical equations which

adjusted momentum theory for changes due to vortex ring state. Johnson examined

a vertical descent from a hover, using the horizontal and vertical components of the

thrust coefficient as controls and a quadratic cost function of vertical and horizontal

final velocity. Johnson solved the resulting two point boundary value problem with

an indirect solution, using an algorithm of steepest descent. Johnson observed that

by assuming an “optimal” series of control inputs, pilot technique could be removed
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from a comparison of different helicopter autorotative characteristics. Johnson’s work

established the dynamic optimization approach as a valid method to determine the

optimal trajectory of a helicopter in descent.

Figure 2.2. Force Diagram used by Johnson in [2]

2.6 Rotorcraft Dynamic Model Improvements

2.6.1 Rigid Body Effects and Force Balance Method

Lee [15] concluded that a point mass model was adequate for predictions of optimal

descent trajectories. Okuno [16] presented a rigid body formulation, modeling fuselage

pitch attitude, rotor flapping angle and motion in the x-z plane. The tip path plane

angle was modeled assuming quasi-steady flapping motion. A force balance method

was utilized with a modified blade element approach that accounted for the effects of

blade stall. Subsequent research has demonstrated sufficient accuracy with a point-

mass model and an energy balance method, seen in References [17, 18, 19, 20, 21, 22].
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2.6.2 Engine Effects

With Okuno [16] as a notable exception, most formulations of the HV optimization

problem use a point mass model that incorporates three degrees of freedom: vertical

velocity, horizontal velocity and rotor angular velocity. To incorporate rotor angular

velocity in an autorotation, Lee [15] balanced an expression for main rotor torque.

Chen and Zhao [17] were the first to study a multi-engine helicopter after a single-

engine failure, referred to as one engine inoperable (OEI) flight. This partial power

scenario requires an expression for main rotor power vice torque. Using this energy

equation, Chen and Zhao incorporated a first-order lag for the failed engine as it lost

power, and to model response of the operating engine. This approach was adopted

and improved by Bachelder [20] and Carlson [22] who both incorporated first-order

engine control unit dynamics into their respective models.

2.6.3 Improved Model for Induced Velocity

Momentum theory diverges from reality at flight conditions where the rate of

descent is approximately equal to one half the velocity induced through the rotor

disk in a hover. This highly turbulent region is termed vortex ring state (VRS).

In his 1977 analysis, Johnson used empirical modifications to momentum theory to

eliminate the momentum theory singularity. In 2005, Johnson published a revised

empirical algorithm for calculating VRS effects based on data from 17 flight, wind

tunnel, whirling beam or track tests [23]. The new algorithm uses the momentum

theory quartic when applicable, a baseline solution which eliminates the momentum

theory singularity (similar to Johnson’s previous empirical modification), and three

curve fits for different segments of the VRS region which were derived from test data.

The appropriate VRS region curve is chosen by the algorithm based off the ratio

of forward velocity to hover inflow velocity. This new model for induced velocity
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provides a close match for several different sets of test data. There is no indication

that Johnson’s revised algorithm for induced velocity has been implemented in recent

HV research, but the algorithm holds promise for improvement of the dynamic model.

2.7 Increased Accuracy Using Path Constraints

The only constraints Johnson [2] imposed on the dynamic optimization solution

were the equations of motion for a point mass helicopter. Lee [15] adopted Johnson’s

approach and modified it by including path constraints on the control variables and

one of the state variables. Lee imposed a path inequality constraint on the thrust

coefficient to limit maximum thrust to mimic a real helicopter and included an upper

bound on the vertical velocity state. A solution was obtained using slack variables

for the inequality constraints and the Sequential Gradient Restoration Algorithm

(SGRA) developed by Miele [13]. Lee developed his solutions for the OH-58A he-

licopter, computed optimal descents from a hover and level flight, and was able to

closely match flight test data for certain parameters.

Okuno et al. [16], used a much more complicated aerodynamic model and a rigid

body model of the helicopter. His formulation included inequality constraints on

blade angle of attack at 0.75 blade radius, and load factor. Okuno’s formulation

applied path constraints to the collective pitch, cyclic pitch, pitch attitude and rotor

speed. Okuno achieved a close match to flight test data published in reference [5].

Chen and Zhao [17] used a point-mass model similar to Lee and included bounds on

rotor speed, thrust and thrust angle. Chen and Zhao also departed from previous

problem formulations by using the thrust coefficient time rate of change of the controls

ĊTx and ĊTz, to avoid discontinuity at engine failure. Bottasso [19], used this setup

and applied bounds to ĊTx and ĊTz. This had the effect of introducing additional

dynamics into a point-mass model by modeling control system rate limits when tilting
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the tip path plane. In an effort to predict the HV diagram of the AH-1Z and UH-1Y

helicopters, Carlson [22] used a similar analysis but instead of bounding ĊTx and ĊTz

he used ĊT and β̇ as controls, where β is the angle between the rotor tip path plane

and the horizon. Lower and upper bounds were then applied directly to ĊT and β̇.

The application of constraints and bounds on various states and controls has enabled

the capture of complicated helicopter dynamics while retaining the simplicity of a

point-mass, momentum-theory model.

2.8 Improved Numerical Solution Methods

The SGRA solution [13] originally used by Lee [24], was an indirect, numerical

solution. This algorithm was also utilized by Okuno et al.[16] and Chen et al.[17]

to compute optimal trajectories for a variety of flight conditions. Improvements in

numerical solutions to the optimal control problem since Chen’s research are described

below.

2.8.1 Direct Collocation Solutions

Direct collocation, as discussed in Section 2.3.3, was first used for the descending

helicopter problem by Jhemi [25] who studied optimal helicopter flight during engine

failure. Research subsequent to Jhemi has mostly utilized the technique of direct

collocation. Carlson [26] used SQP software developed by the Stanford Optimization

Lab to optimize autorotation and single-engine failure trajectories for tilt-rotor air-

craft and helicopters [26], [22]. Bottasso [19] used a finite element method of direct

transcription to analyze a variety of helicopter maneuvers and to conduct parametric

studies. Bachelder [20] used SQP methods and computed autorotative and OEI tra-

jectories for comparison with trajectories. Aponso [21] utilized the same methods as

Bachelder as a Real Time Optimal Control (RTOC) solution. This RTOC solution
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was used to provide control cues for a simulator heads-up display, as a possible flight

training aid. Direct collocation in the context of the helicopter HV problem has three

major advantages over other methods. First, as opposed to any indirect technique,

direct collocation does not require analytical development of the Euler-Lagrange equa-

tions, [10]. Secondly, as compared to any other method, a priori knowledge is not

required of singular arcs which arise from path inequality constraints [10]. Third, as

compared to direct shooting, collocation is well suited to problems involving a larger

number of optimization variables [10]. Direct collocation continues to hold promise for

accurate, robust solutions to the trajectory optimization of a descending helicopter.

2.9 Pseudo-Spectral Collocation and GPOPS-II®

Pseudo-spectral collocation is a particular method of direct collocation that has

been heavily researched in the last two decades. The method combines global poly-

nomial approximations for the states and controls with orthogonal collocation of

the differential-algebraic equations used in a direct method. Orthogonal (or pseudo-

spectral) collocation refers to the assignment of the discretization points to the roots

of an orthogonal polynomial (or some combination of an orthogonal polynomial and

its derivatives) [1]. The three common sets of orthogonal collocation points are the

Legendre-Gauss, the Legendre-Gauss-Radau, and the Legendre-Gauss-Lobatto points,

[1]. The Legendre-Gauss points include neither mesh endpoint, the Legendre-Gauss-

Radau points include one mesh endpoint and the Legendre-Gauss-Lobatto points in-

clude both mesh endpoints. Furthermore, each set of points has led to a differ-

ent mathematical method, namely the Legendre Pseudo-spectral Method, the Radau

Pseudo-spectral Method and the Gauss Pseudo-spectral Method.

The University of Florida Vehicle Dynamics and Optimization Laboratory codified

a Gauss pseudo-spectral method, using Gaussian quadrature to estimate the continous
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cost function. Legendre polynomials were used to approximate the states and controls.

Research by Liu, Hager, Darby, Patterson and Rao resulted in hp adaptive mesh

refinement methods which increased numerical efficiency and allowed a decrease in

the number of collocation points. Their adaptive methods use orthogonal collocation

at the Legendre Gauss Radau (LGR) points and adapts the mesh size and/or the

degree of the polynomials used to approximate the states and controls. Where the

error tolerance has been met, mesh density is reduced by merging adjacent mesh

intervals or by lowering the polynomial degree. These methods were combined with

either an interior point NLP solver (IPOPT), or a NLP solver exploiting sparse matrix

techniques using SQP methods (SNOPT). The entire software package is called the

General-Purpose Pseudospectral Optimal Control Software, (GPOPS-II®) and is

available commercially, [27].

GPOPS-II® was designed for multiple phase optimal control problems. Previous

discussions have assumed a single phase, but multiple phases may be incorporated

into a problem for a variety of reasons, the most obvious being a change in the

dynamics equations [10]. If this is the case, linkage constraints must be added to the

list of algebraic constraint equations ensuring that there are no discontinuities in the

independent variable and the states.

Another key feature incorporated in GPOPS-II ® is the method of co-state esti-

mation developed by Garg et al. [28]. Using an integral form of the dynamics, this

method computes the integral matrix from the initial point to the interior LGR and

a terminal point, as seen in Equ. (54) from [1].

2.10 H-1 Upgrades Height Velocity Diagram Development

Previously mentioned, Carlson published a method for calculating an HV diagram

in [22]. This work was conducted in concert with an HV demonstration for the AH-1Z,
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the results of which are available in [29]. Carlson used direct collocation techniques

and the NLP solver SNOPT to predict the HV diagram prior to flight test.

The Model 449 AH-1Z Flight Test Report for Height-Velocity Demonstration,

[29], contains flight test data from an HV demonstration. Section seven of this report

presents a time history of a simulated single-engine failure from a low altitude, low

airspeed condition. Included are values for the rotor thrust coefficient and rotor tip

path plane were approximated using the method shown by Carson in [18]. This

data was useful in validating the helicopter math model developed for this thesis.

Section seven of [29] also contains the HV diagram which Carlson developed, along

with flight test data which was subsequently obtained with an AH-1Z helicopter.

The flight test data, analytically-produced HV diagram, and optimization techniques

used by Carlson in [22] and [29] were extremely useful during this thesis research as

a means to compare and validate results.

2.11 Conclusions from Previous Research

Recent research suggests that a momentum theory, point-mass helicopter model is

adequate for HV calculations. It has been demonstrated that optimal trajectories can

be used to define the boundaries of the HV diagram, and that path constraints can be

used to include additional aeromechanics. The helicopter model could potentially be

improved with an updated VRS model. Direct solutions using the collocation method

seem to provide the most robust solution to the dynamic optimization problem and

the multi-phase pseudo-spectral adaptive mesh method utilized by the GPOPS-II®

algorithm holds promise as an efficient solver for the HV problem.
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III. Research Methodology

3.1 Chapter Overview

This chapter examines the research methods and techniques utilized to analyti-

cally construct a Height-Velocity (HV) diagram. The case study aircraft was the Bell

AH-1Z Cobra. Several flight test reports provided to NAVAIR by the AH-1Z man-

ufacturer were available for this research. These included the AH-1Z Design Report

[30], the AH-1Z Substantiation Report [31], and the H-1 Height Velocity Test Report

[29]. These documents were heavily utilized for development of the methodology and

comparison of results.

An incremental approach was used in this research project. The works of Johnson

[2], and Lee [15], were adopted as a starting position and then modified with a series

of improvements. The research by Carlson on the H-1 program documented in [29]

and [22] was heavily drawn from during this thesis research. The research plan is

shown below.

• Replicate Lee’s optimal solution of an autorotation

• Utilize Johnson’s new method to calculate induced velocity

• Add states to account for engine torque in a single-engine failure

• Add states to model limitations on control rates

• Improve accuracy of the power coefficient calculation

• Account for ground effect and vertical drag from downwash

• Adjust the helicopter model to match flight test data

• Solve the dynamic optimization problem using GPOPS-II®

The problem was coded using the Matrix Laboratory® (MATLAB) software suite

and the optimization program GPOPS-II®. Unless otherwise noted, named functions

refer to functions provided in MATLAB®.
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3.2 Major Assumptions

The following major assumptions were used in this research:

• A three-degree of freedom, point mass model of the aircraft

• Dynamics developed from momentum theory

• Uniform rotor inflow

• Constant aircraft mass

• Constant air density

• No wind

• Ground effect model for vertical flight

• No contribution from the stub wing or the elevator

3.3 Replicating Lee’s Solution

3.3.1 Aircraft Model

Using the work of Johnson [2] and Lee [15] as a guide, the equations of motion for

a point-mass helicopter model were developed from the force diagram shown in Fig.

3.1.

mẇ = mg − T cosα−D sin θ (3.1a)

mu̇ = T sinα−D cos θ (3.1b)

IRΩ̇ = −QReq (3.1c)

The torque required was calculated using a combination of momentum theory and
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Figure 3.1. Force Diagram Used in this Research

blade element theory.

QReq = CQρA(ΩR)2R (3.2a)

CQ = CP (3.2b)

CP =
1

8
σc̄d + CTλ (3.2c)

The rotor inflow was calculated using Johnson’s technique from [2], as imple-

mented by Lee in pages 19-20, and 28-29 of [15]. This technique used a single,

empirically derived equation to account for the momentum theory singularity.

Aircraft parameters were assigned to replicate the OH-58A helicopter equipped

with high inertia blades, matching the inputs used by Lee.

3.3.2 Optimization Problem Setup Using Lee’s Method

A general formulation of a dynamic optimization problem is given below.
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minimize
u

J = φ(xf , uf , tf ) +

∫ tf

t0

L(x, u, t)dt

subject to x′ − f = 0,

Ψ(xf , uf , tf ) = 0

(3.3)

where:

J = Performance Measure x = States

φ = Terminal Cost u = Controls

L = Path Cost t = Time

f = Path Constraints

Ψ = Terminal Constraints

States were defined and transformed into non-dimensional form to match Lee’s

problem setup on pages 26-34 of [15]. State and control definitions are included here

for clarity as Lee’s formulation was the starting point for research undertaken in this

research.

x1 =
w

0.01Ω0R
(3.4a)

x2 =
u

0.01Ω0R
(3.4b)

x3 =
Ω

Ω0

(3.4c)

x4 =
h

10R
(3.4d)

x5 =
x

10R
(3.4e)
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u1 = 1000CTx (3.5a)

u2 = 1000CTz (3.5b)

Time was non-dimensionalized using the reference time shown in Equ 3.6a and

3.6b. The derivative with respect to non-dimensional time τ is depicted in Equ. 3.6d.

Prime notation (′) indicates the derivative with respect to non-dimensional time, τ .

τ =
t

tref
(3.6a)

tref =
100

Ω0

(3.6b)

τ =
Ω0t

100
(3.6c)

d

dτ
=

100

Ω0

d

dt
(3.6d)

Using the previous definition of prime notation and the constants defined on page

27 of [15], the following equations of motion were used to define the dynamic opti-

mization problem dynamic and kinematic relationships.

x′1 = g0 −m0

(
u1x

2
3 + f̄x1

√
x2

1 + x2
2

)
(3.7a)

x′2 = m0

(
u2x

2
3 + f̄x2

√
x2

1 + x2
2

)
(3.7b)

x′3 = −i0x2
3

(
c0 + λ

√
u2

1 + u2
2

)
(3.7c)

x′4 = 0.1x1 (3.7d)

x′5 = 0.1x2 (3.7e)
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Initial conditions for the kinematic states were determined by the initial flight

condition. Initial values for the remaining states and controls were found by simul-

taneously solving a system of four equations. The fsolve function was used to solve

for the initial conditions.

3.3.3 Solution Using fmincon

MATLAB® script was written using the fmincon function. The fmincon algo-

rithm solves a dynamic optimization problem by formulating the constraint equations

at discrete time steps and solving the resulting system of equations as a static opti-

mization problem.

The constraint and objective functions used by Lee were written in discrete time,

using a reference time of approximately 2.7 seconds. Constrained final state, free final

time solution cases were run from a 100 ft hover and from 100 ft and 12 knots airspeed,

with a constraint on maximum CT . For the hover case, the optimal control trajectory

was obtained with the Sequential Quadratic Programming (SQP) solver provided in

fmincon. For the 100 foot, 12 knot case, the SQP algorithm did not converge so

the interior-point algorithm was utilized. The constraint and convergence tolerances

were both set at 1x10−6. Results showed good agreement to Lee’s solution found in

Chapter 4 of [15].

The optimal control and state histories obtained with fmincon showed very sim-

ilar trends as Lee’s solutions. For both cases, the fmincon solution found slightly

different optimal control strategies and final times, but these are attributed to the

different solution method of fmincon vice the Sequential Gradient Restoration Al-

gorithm (SGRA). The fmincon solution of the 100 foot 12 knot point shows some

irregularities and significant differences, but again trends are matched to Lee’s solu-

tions.
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Figure 3.2. Solution of Lee’s Problem with fmincon

The solution obtained with fmincon was extremely sensitive to the number of

discrete intervals used to solve the static optimization problem. As can be seen

in Fig. 3.3, the angle of the tip path plane to the horizon is quite extreme and

requires additional constraints. Due to the method by which variables were passed

to the fmincon function, additional constraints were not feasible. A better solution

technique was sought.
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Figure 3.3. Un-Constrained Rotor Tip Path Plane Angle

3.4 Changes to the Helicopter Model

Using the math model as derived by Johnson and Lee as a starting point, several

additions and improvements were incorporated. First, the problem was formulated

using the time rate of change of rotor tip path plane angle and the time rate of change

of the thrust coefficient as the dynamic optimization controls. Four additional states

were added to utilize the accelerations of thrust and rotor tip path plane angle as

the controls. Second, an improved method was incorporated to calculate the rotor

inflow. Third, two states were added to account for engine power available during a

single-engine failure on a twin engine helicopter. Fourth, the method for calculating

the power coefficient was modified to improve accuracy over a broader span of flight

conditions. Finally, factors were introduced to the dynamics equations to incorporate

ground effect and fuselage vertical drag from rotor downwash. The methodology for

these improvements was adopted from references [16, 17, 18, 20, 21, 23] and especially
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[22]. In the following paragraphs, each modification is addressed in greater detail. Of

note, state definitions for states x1 through x5 were unchanged, and the definition of

τ was unchanged.

3.4.1 Control Definitions and Associated Additional States

The dynamics equations were written to utilize the time rate of change of the

normalized thrust coefficient and the time rate of change of the rotor tip path plane

angle as the two controls. Two additional states were added to integrate the controls

for inclusion in the equations of motion. This allowed constraints to be placed on

the thrust coefficient rate of change and the tip path plane angle rate of change.

These constraints were used to mimic un-modeled dynamics of the rotor system. The

additional states of the integrated controls (x8 and x9) which represented the thrust

coefficient and tip path plane angle were constrained to mimic rotor performance and

pitch attitude limitations.

u1 = 1000ĊT (3.8a)

u2 = α̇ (3.8b)

x8 = 1000CT (3.8c)

x9 = α (3.8d)

During further progression in the research process, two additional states were

added and were integrated in a similar manner. The accelerations of thrust coefficient
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and rotor tip path plane angle were then used as controls.

u1 = 1000C̈T (3.9a)

u2 = α̈ (3.9b)

x10 = 1000ĊT (3.9c)

x11 = α̇ (3.9d)

3.4.2 Modifications for More Accurate Rotor Inflow

The rotor inflow was calculated using an algorithm developed by Johnson [23].

The components of velocity were calculated perpendicular and parallel to the rotor

tip path plane and were made non-dimensional using the rotor inflow in a hover, vh.

vh =

√
T

2ρA
(3.10a)

µz =

(
Rotor Vz

vh

)
=
u sinα− w cosα

vh
(3.10b)

µx =

(
Rotor Vx

vh

)
=
u cosα + w sinα

vh
(3.10c)

Using the previous state definitions, the following equations were obtained.

vh = RΩ0x3

√
x8

2000
(3.11a)

µz =

(
0.4472

x3
√
x8

)
(x2 sinx9 − x1 cosx9) (3.11b)

µx =

(
0.4472

x3
√
x8

)
(x2 cosx9 + x1 sinx9) (3.11c)

These non-dimensional velocities were passed to a series of functions which re-
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turned a value for the non-dimensional, induced rotor inflow, λiJ , using the method

detailed in Chapter 2. Since this value was made non-dimensional with vh, the pa-

rameter was converted into the traditional λi by the following equation:

λi =
λiJvh
ΩR

(3.12)

In terms of states this equation was written as follows.

λi = 0.0224λiJ
√
x8 (3.13)

For flight conditions in which the momentum theory result was valid, the mo-

mentum theory quartic was solved using a Newton-Raphson technique developed by

Johnson in Chapter 5 of [4]. Since the rotor inflow was calculated using momentum

theory for much of the flight regime, this solution technique drastically reduced com-

putation time, as compared to solutions using fzero to solve the momentum quartic.

3.4.3 Additional States for Engine Power

Following the works of Bachelder [20] and Carlson [22], two states were added

to account for an operating engine during single-engine failure. The first state rep-

resented the failed engine, and provided power that exponentially decayed to zero.

The second state was modeled with a proportional controller, and included saturation

at the one engine inoperable (OEI) power rating, the maximum power output of the

engine as governed by an engine controller. Specific to the AH-1Z, a half second delay

was included to model engine control unit response to a single-engine failure. Each
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power state was normalized with the OEI power rating.

Ṗ1 = − 1

τ1

P1 (3.14a)

Ṗ2 = 0 for t ≤ 0.5 (3.14b)

Ṗ2 =
1

τ2

(P2AG − P2) for t > 0.5 (3.14c)

P2AG = min
{
PR −G(Ω− Ω0), POEI

}
(3.14d)

Each of the above equations was divided by POEI yielding the following non-

dimensional governed engine power available and power state derivatives.

x′6 = − 100

Ω0τ1

x6 (3.15a)

x′7 = 0 for τ ≤ 0.5

tref
(3.15b)

x′7 =
100

Ω0τ1

(P2G − x7) for τ >
0.5

tref
(3.15c)

P2G = min
{
PR1 −

GΩ0

POEI
(x3 − 1), 1

}
(3.15d)

3.4.4 Power Coefficient and Total Power Required

The power required was calculated as a sum of the power required for the main

rotor, tail rotor and accessory/drivetrain loss. The formulation for accessory and

drivetrain losses is specific to the drivetrain design of the AH-1Z. The remaining

terms were formulated generically for a traditional helicopter.

3.4.4.1 Main Rotor Power

The main rotor power coefficient used by Johnson [2], Lee [24] and Aponso [21] was

modified to increase accuracy over a larger range of airspeeds. The power coefficient
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for the main rotor represents all sources of rotor energy loss, and was calculated as

the sum of the power coefficients for induced power, profile power, parasite power and

climb power respectively. Each term was calculated using techniques from Chapter 6

of [4]. The equations were solved using the MATLAB® fsolve function to determine

power required in several level flight conditions. The resulting values were compared

to level flight performance for the AH-1Z provided by NAVAIR, and adjustments to

the model were made to match flight test data as closely as possible.

CPMR
= CPi + CPo + CPp + CPc (3.16)

The induced power coefficient, Cpi, was calculated assuming uniform inflow. An

induced velocity correction factor, ki was applied.

CPi = kiλiCT (3.17)

The profile power coefficient, CPo, was augmented with a (1−4.65µ2) term. According

to Chapter 6 of [4], this approximation yields less than 1% error for µ ranging from 0 to

0.35. For the AH-1Z case study helicopter, a µ of 0.35 corresponds to approximately

149 knots, well outside the single-engine flight envelope.

CPo =
σcdo

8
(1 + 4.65µ2) (3.18)

With µ, the advance ratio, calculated as follows in terms of dimensional and non-

dimensional parameters, respectively.

µ =
u cosα + w sinα

ΩR
(3.19a)

µ =
0.01

x3

(x2 cosx9 + x1 sinx9) (3.19b)
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The parasite power coefficient was calculated using the following approximation from

Chapter 5 of reference [4].

CPp =
1

2

fex
A
µ3 (3.20)

The climb power coefficient accounts for the energy required to change altitude. Climb

power was calculated as the product of aircraft weight and vertical velocity, and a

negative sign was required since w was defined positive down in the problem setup.

Pc = −wW (3.21)

CPc = − wW

ρA(ΩR)3
(3.22)

3.4.4.2 Tail Rotor Power

In lieu of a similar buildup for the tail rotor power coefficient, CPTR
, CPTR

was cal-

culated using a power coefficient formulated for hover. The tail rotor thrust required

and thrust coefficient were calculated using main rotor torque. An approximation

for the tail rotor power coefficient was then calculated using a power coefficient for a

hovering rotor, and modified with a dependence on advance ratio which was empiri-

cally derived in this research. Due to the relatively small power required for the tail

rotor compared to the main rotor, the incurred error was judged to have negligible

impact on the solution.

TTR =
QMR

lTR
(3.23a)

CTTR
=

TTR
ρATR(ΩTRRTR)2

(3.23b)

PRTR
= (1− 1.2µ)

1

MTR

CTTR
(3.23c)
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3.4.4.3 Drive Train Losses and Accessory Power

Using the method and values for the efficiencies shown in Chapter 8 of [31], the

drive train losses of the main rotor, tail rotor and combining gearbox were considered

separately for the AH-1Z. The method used to calculate drivetrain efficiencies will

vary from one aircraft to another and is dependent on the drivetrain design.

3.4.4.4 Total Power Required

The total power required was calculated using the method shown on page 8-1 of

[31]. The power required was made non-dimensional by dividing by the OEI power.

PR =
1

ηCBOX

(
PMR

ηMR

+
PTR
ηTR

+ PAcc

)
(3.24a)

PR1 =
PR
POEI

(3.24b)

3.4.5 Ground Effect

Ground effect was incorporated in the model using an approach found in [4],

[32], [33] and [34]. Ground effect may be treated by modifying the induced velocity

experienced by the main rotor at a constant thrust or by modifying the thrust which

the rotor produces at a constant induced power. The latter approach was used in [4]

and was adopted for this investigation. A ground effect factor, kG was defined as the

ratio of thrust produced in ground effect, to thrust produced out of ground effect.

kG =
TIGE
TOGE

(3.25)

Chapter 4 of reference [4] includes several different methods to calculate kG, each

a function empirically derived from test data. For all methods, kG is a function of
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the ratio of rotor altitude (z) to the rotor radius. Above approximately two rotor

diameters, kG is unity. As altitude decreases, kG increases to a maximum value of

approximately 1.31. In the equations of motion, kG was used as a multiplicative factor

on CT in the dynamic equations only.

Data was available in [31] for values of 1
kG

for the AH-1Z which were derived from

flight test. The Cheeseman/Bennett solution and the Hayden solution were compared

to the data in [31] and the Hayden ground effect solution was found to be a very close

match. The Hayden solution was used to run simulations. Since the equation returns

values slightly greater than one for all altitudes, kG was set to 1.0 when the altitude

was greater than twice the rotor diameter. Fig 3.4 shows a comparison of the Hayden

and Cheeseman/Bennett solutions.

Cheeseman and Bennett ground effect factor:

kG =

[
1− 1

(4z/R)2

]−1

(3.26)

Hayden ground effect factor:

kG =

[
0.9926 +

0.03794

(z/2R)2

]2/3

(3.27)

3.4.6 Vertical Drag from Downwash

The rotor wake impinges on a helicopter fuselage and creates a force in the z

aircraft body axis. According to Johnson in [4], this force can be treated as a modifi-

cation of the aircraft thrust. Johnson also states that vertical drag from downwash is

airframe and rotor system dependent, that ground effect may cause an unpredictable

change in the vertical drag force (including a different direction of the force) and that

the vertical drag force disappears above transition velocity in forward flight. For this
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Figure 3.4. Ground Effect Models

research, the factor fv was used to modify the thrust coefficient in the helicopter math

model.

fv =
∆T

T
=

feR
A− Acuff

(3.28)

A washout parameter, fw, was included to reduce the vertical drag force as air-

speed increased. The value of fw in a hover was one, and linearly decreased to zero

at an airspeed of 30 knots.

3.4.7 Pilot Delay

HV diagrams are typically computed or tested with the incorporation of artificial

delay to simulate the reaction time of an operational pilot. A pilot delay was modeled

by integrating the dynamics equations using the ode45 function. Prior to the inte-
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gration, trim values were calculated for the engine power states and controls, using

the same method as described in Section 4.2.1. The computed values for the thrust

coefficient and rotor tip path plane angle were held constant during the integration. A

1.5 second delay was used to determine the portion of the HV diagram above the knee

point and zero delay was used below the knee point. State values at the end of the

one second integration were used as initial conditions for the optimization problem.

3.5 Dynamic Model

The dimensional dynamic equations for the helicopter model previously described

are shown below. These seven equations were formulated into two different models

in this research. The first was a nine-state, two control model similar to that of

Carlson, [29], which used the first derivatives of thrust coefficient and tip path plane

angle as the two controls. The second formulation was an 11 state model, using

the second derivatives of thrust coefficient and rotor tip path plane angle as the

controls. The nine-state model is shown below with definitions of states, controls,

dynamic equations, supporting parameters and constants. Modifications for the 11

state model are also depicted.
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3.5.1 Dimensional Equations

mẇ = mg − T (kg + fvfw) cosα−D sin θ (3.29a)

mu̇ = T (kg + fvfw) sinα−D cos θ (3.29b)

IRΩ̇Ω = P1 + P2 − PReq (3.29c)

ḣ = −w (3.29d)

ẋ = u (3.29e)

τ1ṖS1 = −PS1 (3.29f)

τ2ṖS2 = PA2G − PS2 (3.29g)

3.5.2 State Definitions

x1 =
w

0.01Ω0R
(3.30a)

x2 =
u

0.01Ω0R
(3.30b)

x3 =
Ω

Ω0

(3.30c)

x4 =
h

10R
(3.30d)

x5 =
x

10R
(3.30e)

x6 =
P1

POEI
(3.30f)

x7 =
P2

POEI
(3.30g)

x8 = 1000CT (3.30h)

x9 = α (3.30i)

40



For the 11 state model:

x10 = 1000ĊT (3.31a)

x11 = α̇ (3.31b)

(3.31c)

3.5.3 Control definitions

u1 = 1000ĊT (3.32a)

u2 = α̇ (3.32b)

For the 11 state model:

u1 = 1000C̈T (3.33a)

u2 = α̈ (3.33b)

3.5.4 Dynamic Equations

The system of dynamics equations, f, is defined as

f = x′ (3.34)

41



x′ is composed of the individual equations of motion, and the ′ notation denotes the

derivative with respect to non-dimensional time τ , as given in Eq. 3.6d.

x′1 = g0 −m0x
2
3x8(kg + fwfv) cosx9 − f0Zx1

√
x2

1 + x2
2 (3.35a)

x′2 = m0x
2
3x8(kg + fwfv) sinx9 − f0Xx2

√
x2

1 + x2
2 (3.35b)

x′3 =
i0
x3

(x6 + x7 − PR1) (3.35c)

x′4 = −0.1x1 (3.35d)

x′5 = 0.1x2 (3.35e)

x′6 = −k1x6 (3.35f)

x′7 = k2(P2G − x7) (3.35g)

x′8 = trefu1 (3.35h)

x′9 = trefu2 (3.35i)

For the 11 state model:

x′8 = trefx10 (3.36a)

x′9 = trefx11 (3.36b)

x′10 = trefu1 (3.36c)

x′11 = trefu2 (3.36d)

42



3.5.5 Supporting Parameters

The following expressions provide the main rotor and tail rotor power equations

and the total power required in dimensional and non-dimensional terms.

CPMR
= kiλi

u1

1000
+ p1(1 + 4.65µ2) + p2µ

3 − p3
x1

x3
3

(3.37a)

PRMR
=

1

M
p4CPMR

x3
3 (3.37b)

PRTR
= (1− 1.2µ)

1

MTR

√
P 3
RMR

pTx3
3

(3.37c)

PR =
1

ηcbox

(
PMR

ηMR

+
PTR
ηTR

+ PAcc

)
(3.37d)

PR1 =
PR
POEI

(3.37e)

P2G = min
{
PR1 −G1(x3 − 1), 1

}
(3.37f)
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3.5.6 Constants

Constants used in the preceding equations are defined below.

f0x =
ρfexR

2m

f0z =
ρfezR

2m

g0 =
10000g

Ω2
0R

i0 =
100POEI
IRΩ3

0

k1 =
tref
τ1

k2 =
tref
τ2

G1 =
GΩ0

POEI

m0 =
10ρπR3

m

p1 =
σcd0

8

p2 =
fex + δfe

2πR2

p3 =
0.01W

ρπR4Ω2
0

p4 = ρπR5Ω3
0

3.6 Optimization Problem Setup for GPOPS-II®

The helicopter models developed in preceding paragraphs were used to formulate

optimal control problems useful for determining the HV diagram. Although sev-

eral different permutations of the problem were utilized, the following problem setup

addresses the final, 11 state model.

The problem was framed separately for the portion of the HV curve above the
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knee and the portion below the knee. Above the knee, the problem was solved in

two phases with an objective function based on initial altitude and minimum control.

The two phases allowed the incorporation of more stringent pitch attitude limits near

the deck. Since the helicopter was modeled as a point mass, rotor angle was used

to approximate pitch attitude. This approximation was used by Carlson in [29] to

derive values for rotor angle from pitch attitude data. The boundary between the

two phases was set to occur as the helicopter model descended below three feet. For

the second phase, with altitude less than three feet, path bounds on rotor tip path

plane angle were reduced to ± 5deg, and the final value of rotor angle was bounded

with values similar to actual aircraft touchdown attitude.

Below the knee a single phase was used. A single phase was sufficient since flight

test data showed that the more stringent bounds used below three feet as described

above were very close to those used throughout the trajectory for lower curve data

points. Bounds on the rotor tip path plane angle were set to the same values as in

phase two described above.

Both formulations included an open final time, a partially constrained initial state

and partially constrained final state. The dynamics equations were enforced as path

constraints and bounds were placed on all states and controls.
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3.6.1 Optimal Control Problem Above the Knee Point

minimize
u

J = h0 +

∫ τf

τ0

W1u
2
1 +W2u

2
2 dt

subject to x′ − f = 0,

x(τ0)− xpostdelay = 0,

g1(x) ≤ 0,

g2(u) ≤ 0,

xp1f − x
p2
0 = 0,

x(τf )− xf = 0

(3.39)

Note that the initial altitude state (x4) was free and that only certain final states

were fixed with equality constraints. Functions g1 and g2 refer to the path bounds on

the states and controls respectively.

3.6.2 Optimal Control Problem Below the Knee Point

minimize
u

J = −h0

subject to x′ − f = 0,

x(τ0)− xpostdelay = 0,

g1(x) ≤ 0,

g2(u) ≤ 0,

x(τf )− xf = 0

(3.40)

The major differences from the previous setup are the objective function and lack

of phase linkage constraints since a single phase was utilized below the knee. Again

the initial altitude state (x4) was free and only certain final states were fixed.
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Figure 3.5. Objective Function Definition

3.6.3 Initial Condition Constraints

After the integration of the dynamics equations to simulate pilot delay, end values

for each state were enforced as initial conditions for the optimal control problem.

Initial altitude remained free. The initial conditions for the controls were set to zero.

The constraints listed below are given in terms of dimensional variables and were
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converted to non-dimensional states or controls prior to utilization.

t0 = tdelay

w0 = Vertical velocity after pilot delay

u0 = given value for each iteration

Ω0 = rotor angular velocity after pilot delay

x0 = 0

P10 = Engine 1 power after pilot delay

P20 = Engine 2 power after pilot delay

CT0 = trim condition CT

α0 = trim condition α

ĊT0 = 0

α̇0 = 0

C̈T0 = 0

α̈0 = 0

3.6.4 Path Constraints

The following inequalities were enforced as path constraints. Airspeed was limited

to 150 knots, and sink rate was limited to 3000 feet per minute. The choicees of αmin
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and αmax had a great effect on the solution and are discussed in Chapter 4.

tdelay ≤ t ≤ tmax

0 ≤ w ≤ wmax

0 ≤ u ≤ umax

Ωmin ≤ Ω ≤ Ωmax

0 ≤ h ≤ h0

0 ≤ P1 ≤ POEI

0 ≤ P2 ≤ POEI

CTmin ≤ CT ≤ CTmax

αmin ≤ α ≤ αmax

ĊTmin ≤ ĊT ≤ ĊTmin

α̇min ≤ α̇ ≤ α̇max

C̈Tmin ≤ C̈T ≤ C̈Tmax

α̈min ≤ α̈ ≤ α̈max

3.6.5 Linkage Constraints

For the upper portion of the curve, two phases were utilized. Linkage constraints

were used to knit the time and state values together at the border of the first and

second phase, ensuring continuity of the control, state and time solution from phase

one to phase two.

for k = 1 to 9, xp1kf = xp2k0

3.6.6 Final Condition Constraints

The final altitude was fixed to zero with an equality constraint, ensuring the

solution terminated at the ground. Tighter bounds were placed on vertical velocity,
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horizontal velocity and rotor tip path plane angle to ensure a safe touchdown.

hf = 0

wfmin ≤ wf ≤ wfmax

ufmin ≤ uf ≤ ufmax

Ωmin ≤ Ωf ≤ Ωmax

0 ≤ P1 ≤ POEI

0 ≤ P2 ≤ POEI

CTmin ≤ CT ≤ CTmin

0 ≤ α ≤ αf

ĊTmin ≤ ĊT ≤ ĊTmin

α̇min ≤ α̇ ≤ α̇max

C̈Tmin ≤ C̈T ≤ C̈Tmin

α̈min ≤ α̈ ≤ α̈max

3.7 Solution using GPOPS-II®

3.7.1 Solution-Specific Input Parameters

There were several parameters which were varied for different data points on the

HV curve. The most important of these by far was the choice of state and control

bounds, but each was noted to have an affect on the solution.

Table 3.1. Parameters Varied for Each Run

Bounds on tip path plane angle
Bounds on tip path plane rate
Guess for the initial altitude
Upper and lower bounds on initial altitude
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3.7.2 Static Input Parameters

Other parameters in GPOPS-II® were set by trial and error, and remained mostly

unchanged for all computations. Values are listed in Table 3.2 with explanations in

the paragraphs below, if required. Unless otherwise noted, the reference from which

descriptions of these parameters are taken is the GPOPS-II® user’s guide [27].

Table 3.2. GPOPS-II® Parameters used for HV Solution

Parameter Value
Mesh Tolerance 1x10−4

NLP Tolerance 1x10−6

Derivative Stepsize 1x10−8

Mesh method hp-LiuRao-Legendre
Minimum number of collocation points 4
Maximum number of collocation points 30-50
Mesh sigma 0.5
SNOPT maximum number of iterations 1000
Derivative Supplier Sparse finite differencing
Derivative Dependencies Full
Scaling None
Setup Method RPM-Differentiation

The NLP tolerance provided Sparse Nonlinear Optimizer (SNOPT) with the al-

lowable constraint violation tolerance. The mesh tolerance provided the desired ac-

curacy for the discrete approximation of the optimal control solution. Once solved

by the nonlinear programming (NLP) solver for a given mesh, the problem was un-

transcribed to a discrete approximation. An error for the discrete approximation

was estimated and compared to the mesh tolerance and further mesh refinement was

conducted if the tolerance was not met.

The hp-LiuRao-Legendre mesh refinement method was utilized since the method

was observed to provide the most reliable convergence rate for the given problem

formulation. hp mesh refinement methods use Gaussian quadrature orthogonal collo-

cation at Legendre-Gauss-Radau points, and adjust both the mesh size and approx-
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imating polynomial degree during refinement. it methods also reduce the degree of

the approximating polynomial where the solution is smooth and reduce mesh den-

sity where the error tolerance has been met. The hp-LiuRao-Legendre method differs

from other hp methods in the procedure used to determine whether an increase in

the number of mesh points or an increase of the approximating polynomial degree is

appropriate for further mesh refinement.

The mesh sigma parameter, in combination with the decay rate of the Legendre

polynomial coefficient expansion, determines whether to increase the approximating

polynomial degree within the interval or to create new intervals.

The mesh tolerance, the SNOPT tolerance and derivative step size were typically

relaxed for troubleshooting and initial attempts at convergence. Values for these

parameters during the solution process are discussed in Section 3.7.4.

The minimum number of collocation points was set to four, and the maximum

number of collocation points between 30 and 50. The SNOPT NLP solver was utilized

due to the sparse nature of the derivative matrices. The derivative supplier was

typically set to sparseFD, specifying the forward differencing method, and derivative

dependencies were set to full. No automatic scaling was used since the dynamics

equations were previously scaled. RPM-Differentiation was used as the setup method.

3.7.3 Usage of the Hamiltonian

As discussed in 2.4 the Hamiltonian for the helicopter dynamic model was linear

with respect to the controls. This implied that optimal solutions involved one or more

singular arcs. Many solutions examined in this study resulted in Hamiltonians which

were comprised of several semi-constant, discontinuous segments, as seen in Appendix

A. This behavior was similar to results obtained by Rao for a problem involving

singular arcs [1]. The minimization of the Hamiltonian value aided in selection of
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tolerances, as described below.

3.7.4 Tolerance Selection and Convergence

During multiple solution attempts, it was noted that changes in the mesh tolerance

and NLP solver tolerance affected the solution. A convergence study was conducted to

determine the proper range of values for these two parameters. Optimal descents from

the high hover point were examined with a weighted combination of initial altitude

and final time for the objective function. The rotor tip path plane angle was bounded

to ±4.8 deg. The derivative step size was held constant at 1x10−8, all parameters

from Section 3.7.2 were held constant and the initial solution guess was held constant

as given in Tables C.1 through C.3. The initial altitude solution and the Hamiltonian

were used to conduct the convergence study. The root mean square error of the

Hamiltonian was used as an indicator of optimality. Semi-constant discontinuous

segments and low values of root mean square error were assessed as indicators of

appropriate tolerances.

The study showed that the largest satisfactory tolerance was 1x10−4 for both the

mesh and NLP tolerances and that solutions became insensitive to mesh tolerance

at NLP tolerances less than 1x10−4. Minimum values for root mean square error in

the Hamiltonian coincided with convergence in the initial altitude solution. As each

tolerance was decreased further, in various combinations, the optimal initial altitude

changed very little (±2 feet).

This study was only conducted at the high hover point, and was not meant to

find a single tolerance combination for all runs. Rather, it provided a general idea

of what tolerance values should provide reliable solutions. Generally, tighter NLP

tolerances aided in reducing scatter in the Hamiltonian. Reduction of the mesh

tolerance below 1x10−4 was mostly used to prevent GPOPS-II® from ending a run
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without satisfying the constraints. For many solution attempts, both tolerances were

set as tight as convergence would allow. For the majority of runs, the mesh tolerance,

NLP tolerance and derivative step size were set to the values shown in Table 3.2. Full

results from the convergence study are contained in Tables C.4 and C.5 in Appendix

C.

3.7.5 Initial Guess Formulation

GPOPS-II® requires an initial guess of the solution in the form of at least two

values for the time, states and controls. A very coarse initial guess was provided to

GPOPS-II, composed of three values for each state and control. The solution was

found to be quite sensitive to initial guess values, and heuristic techniques yielded

initial guess matrices for the upper portion of the curve and the lower portion respec-

tively. For the upper portion of the curve, an initial guess was required for each of

the two phases. These matrices are depicted in Tables C.1 through C.3.

As compared to indirect methods, direct collocation typically requires much less

knowledge of the solution. However, it was found that the GPOPS-II® solution to

the HV problem was fairly sensitive to values in the initial guess, making changes in

the initial guess a very coarse assumption of the solution form. The initial guess was

altered for some data points to ensure GPOPS-II® converged on a realistic solution.

The usual technique of feeding solutions back into GPOPS-II® as a more accurate

initial guess did not appear to yield better results. This technique caused additional

oscillations in the controls and more scatter in the Hamiltonian.

3.7.6 Solution Technique

After values for the parameters listed in section 3.7.2 had been assigned, the entire

HV was obtained by manually varying the initial airspeed condition. Iteration was
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required on the starting altitude guess, since the initial guess value influenced the

steady level flight trim initial condition if the initial altitude placed the helicopter

model in ground effect. It was assumed that a solution that matched actual pilot

technique was more desirable than a truly optimal solution, and that the overall shape

of the single-engine HV diagram of the AH-1Z was similar to previously computed

diagrams. Table 3.3 shows the basic solution sequence.

Table 3.3. Solution Process

Step
1) Set the initial airspeed
2) Enter a guess for the initial altitude
3) Set bounds for the initial altitude

4) Set bounds for CT , ĊT , α and α̇
5) Adjust guess values for maximum vertical and horizontal velocity
6) Adjust tolerances for the mesh, NLP solver and derivative step size if required
7) Iterate until the guess for initial altitude matched the solution

An SNOPT exit flag of 0,1 (successful finish, optimality conditions satisfied), was

verified for all solutions reported in this research. Solutions were further evaluated by

checking the solution final time for a reasonable order of magnitude and comparing

the final time against flight test data where possible.

3.8 Control Definition and Objective Function Study

A study was conducted by varying the control definitions and objective function.

Control definitions were varied by using both the nine and eleven state models. The

11 state model allowed the accelerations of CT and α to be minimized in the ob-

jective function. The objective function was varied with different combinations of

initial altitude, final time and the accelerations from Eq. 3.33a and 3.33b. Solutions

were evaluated based on control solution oscillation and scatter in the Hamiltonian.

Solutions were examined at the high hover, knee and low hover points.
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IV. Results

4.1 Chapter Overview

This chapter presents a validation of the dynamic model, comparison of an optimal

control solution with flight test data and the method used to calibrate solutions with

flight test data. The results of a study in control definition and objective functions

are then presented along with the full Height-Velocity (HV) diagram for the AH-1Z.

The chapter concludes with a comparison of induced velocity models.

4.2 Helicopter Model Validation

The helicopter model described in Chapter 3 was validated by using aircraft in-

put parameters for the AH-1Z and comparing analytical results with flight test data

obtained from [29] and [31]. Two methods were used. First, the power required for

level flight was calculated using the dynamic model and compared against level flight

performance data from [31]. Second, an open-loop simulation was used to compare

analytically derived trajectories with flight test time histories.

4.2.1 Level Flight Performance

Level flight performance data were available for the AH-1Z in [31]. The helicopter

dynamic model was used to calculate the referred shaft horsepower required for level

flight with flight conditions matched to that shown on pages B-2 and B-3 of [31].

The fsolve function was used to solve equations 3.35a,3.35b, and 3.35c for energy-

balanced values of CT , α, and engine power. The power required for level flight was

then calculated for the main and tail rotor. Speed power polars are shown in Figures

4.1 through 4.3.
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Figure 4.1. AH-1Z Main Rotor Referred Power Required

Figure 4.2. AH-1Z Tail Rotor Referred Power Required
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Figure 4.3. AH-1Z Referred Low Speed Performance

The dynamic model was calibrated to flight test data by adjusting the induced

velocity correction factor, a flat plate drag correction factor added to the horizontal

flat plate drag in the parasite power term, main and tail rotor efficiency factors and

the µ term in the tail rotor power required equation. The best fit with flight test

data was found with an induced velocity correction factor of 1.08, flat plate drag

correction of 10 square feet, main rotor efficiency of 0.88, tail rotor efficiency of 0.7,

and the (1 − 1.2µ) term shown in equation 3.37c. If Fig. 4.3 is compared with Fig.

7-67 in [29], good correlation is observed, with the helicopter dynamic model slightly

overestimating the hover power required as compared to flight test data.

If Fig. 4.1 and Fig. 4.2 are compared with pages B-2 and B-3 of [31], it is observed

that the dynamic model underestimates main rotor power required in the 50 to 70 knot

range, and provides good correlation at higher airspeeds. The analytically calculated

tail rotor power required diverges from flight test data at approximately 105 knots.
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Since the contribution of the tail rotor to the total power requirement is small (< 10%)

and since the HV solutions under consideration did not involve airspeeds higher than

100 knots, the error was considered acceptable for this research.

4.2.2 Simulated Single-Engine Failure

Fig. 7-70 and Fig. E-73 through E-75 in [29] present a time history of a simulated

single-engine failure from a low altitude, low airspeed condition. Included in Fig.

7-70 are values for the rotor thrust coefficient and rotor tip path plane angle which

were derived by Carlson using the method shown in [18].

Data were manually extracted from the thrust coefficient and rotor tip path plane

angle plots. These data were interpolated using a piecewise cubic method and were

used as inputs (x8 and x9) in an open loop simulation. The dynamics equations were

integrated using the single-step, explicit Runge-Kutta method algorithm ode45. The

results of this simulation provided a means to assess the accuracy of the helicopter

model used in this research by directly comparing dynamic, analytical results to flight

test data depicted in [29]. Note that the convention for TPP angle is reversed from

that used in [29]. Time histories for the simulated single-engine failure are shown in

Fig. 4.4.

Overall, the dynamic response of the helicopter model to the inputs shown in Fig.

4.4 compares fairly with the flight test data presented on page 7-88 of [29]. Several

discrepancies can be observed, but the most notable is in the sink rate. The sink rate

is too high for portions of the trajectory. Also, a negative sink rate develops twice

during the trajectory. It was assessed this was caused by direct modification of the

CT variable with the ground effect parameter.
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Figure 4.4. Open Loop Simulation of a Single-Engine Failure
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4.2.3 Helicopter Dynamic Model Validation Summary

The dynamic model was insufficient for full flight simulation but was judged ade-

quate for the purposes of this research due to favorable comparisons with level flight

performance data and a simulated single-engine failure.

4.3 Comparison of Optimal Control Solution with Flight Test Data

By limiting the feasible set of initial altitude to the initial conditions for a flight

test event, the optimal control solution was compared with flight test data. The same

simulated single-engine failure flight test event used to validate the dynamic model

in paragraph 4.2.2 was used for comparison with an optimal control solution. The

11 state model was used, the initial airspeed was set appropriately, and bounds were

adjusted to match Fig. E-73 through E-75 of [29]. Figures 4.5 and 4.6 show time

histories for the optimal controls and states respectively.

Figure 4.5. Optimal Controls for Single-Engine Failure at 20 ft, 18 knots
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Figure 4.6. Optimal States for Single-Engine Failure at 20 ft, 18 knots
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The optimal control solution has a different shape since the accelerations of CT

and α were being minimized. Overall though the airspeed, rate of descent, tip path

plane and altitude time histories compare well. The final time of the optimal control

solution 8.3 seconds is significantly shorter than the flight test touchdown time of

approximately 15 seconds. This disparity in final time is likely due to a higher thrust

coefficient used for a longer duration in the optimal solution.

4.3.1 Rotor Speed

A comparison of the rotor speed time histories highlights a key point about the

problem formulation used in this research. The optimal control solution clearly droops

the rotor to its lowest available value of 92%. In the flight test run, the rotor droops

approximately 3.5% and then returns to its nominal value. The test pilot reduced

the power demand (blade pitch) to maintain rotor speed during the simulated single-

engine failure. The optimal control solution utilized a higher CT causing the rotor

speed to droop. This is caused by the dynamic optimization problem formulation.

Since there is no pilot model included in the overall dynamic model, no mechanism

exists to maintain the rotor speed at the nominal value when the power required ex-

ceeds the optimal solution for power demanded. The squared difference between rotor

speed and nominal rotor speed was experimentally placed in the objective function

but the results were inconsistent.

4.3.2 Hamiltonian

The Hamiltonian for the optimal control solution is shown in 4.7. Note the 10−5

scale. The near constant value of the Hamiltonian occurred repeatedly during this

research when the bounds for initial altitude were set such that the h0 term in the ob-

jective function could be minimized to zero. Essentially if the initial altitude bounds
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were set so that GPOPS-II® solved for a local extremal vice a global extremal, then

the computed Hamiltonian was nearly constant at zero. This behavior was useful

when identifying the knee point.

Figure 4.7. Optimal Hamiltonian for Single-Engine Failure at 20 ft, 18 knots

4.4 Calibrating the Optimal Control Solution Using Flight Test Data

Flight test data from [29] were used extensively to calibrate the model. When

comparing flight test data with analytical solutions, test data for pitch attitude and

pitch rate were considered approximations for rotor tip path plane angle and rate.

For aircraft with different rotor system characteristics, a time lag may be necessary

to keep this approximation within reasonable error.

As mentioned in Chapter 3, the initial altitude was quite sensitive to the choice
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of bounds for several parameters. Most notably, the constraints on rotor tip path

plane angle drastically affected the airspeed gained in a descent and therefore the

aerodynamic efficiency of the descent (in terms of induced velocity). As an example

of the sensitivity, if all other parameters were held constant and the bounds on tip

path plane angle were altered from ±15 deg to ±5 deg the minimum initial altitude

for a high hover changed from 98 feet to 501 ft. The natural course of action was

to examine simulated single-engine failures, note the maximum pitch attitude and

pitch rate, and use those values as bounds for the optimal control solution. In some

cases however, this resulted in markedly different initial altitudes than observed in

the flight test data.

A more dependable method for selecting appropriate bounds was to correlate the

area under the optimal tip path angle solution with the area under the test data

pitch attitude history. All solutions obtained with GPOPS-II® showed the same

technique: decrease the tip path plane angle to the lower bound, hold it there as

long as possible and then increase the tip path plane angle to decelerate the aircraft

once in ground effect. The same control scheme was used by the test pilot: [29]

shows that nose-low pitch attitudes and pitch rates were often rather pronounced.

The difference lay in how long the nose was held at the extreme position. The pilot

usually relaxed the nose-down attitude quickly so that the rate of descent did not

reach an unrecoverable value. To account for different shapes of the two curves, the

bound on tip path plane angle was adjusted to bring the two projected areas closer

to the same value. Not to scale, Fig. 4.8 depicts this relationship. Bounds on rates

and acceleration were drawn more directly from the data.

Also, an examination of flight test data shows that the pilot flew the aircraft

differently for different flight conditions. At the high hover point, the initial pitch-

down maneuver was quite pronounced. At the knee point and the low hover point,
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Figure 4.8. Choosing Appropriate Bounds for TPP Angle

the lowest pitch attitude was much less severe. This meant that bounds required

adjustment to accurately determine the entire HV diagram. The attempt to match

pitch angle time history areas was completed at the high hover point, low hover

point and a location close to the knee point. After optimal control solutions were

plotted at the three points, bounds were varied more or less linearly to obtain the

remainder of the curve. Fig. 4.9 depicts the process. Bound selection was aided by

the assumption that the curve should be smooth. For the 11 state model, bounds

Figure 4.9. Calibration of Bounds
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for C̈T were approximated using flight test pitch rate curves. This approximate value

was used when possible, but at times had to be increased to achieve convergence.

The solution was far less sensitive to CT and ĊT bounds. The upper bound on

CT was never reached, and approximations for ĊT from Carlson’s Fig. 7-70 in [29]

required no adjustment. These approximations were unchanged for each solution.

4.5 Control Definitions and Objective Function Study

One of the research objectives was to determine an avoid region which reflected not

only the physical capabilities of the aircraft but also pilot technique. For example,

the aircraft is capable of much steeper descents and much more aggressive flares

than were observed in flight test time histories, so the HV avoid region could in

theory be smaller. However, pilot workload is an important factor in determining the

diagram. The HV diagram is not published to inform a pilot of the absolute boundary

between a safe and unsafe descent which is only valid for a completely optimal control

input sequence. Rather, the diagram informs the pilot of the boundary when using

reasonable control inputs taught as standard pilot technique. A study was completed

using optimal descent solutions from the nine state model and the 11 state model.

Different objective functions were used to incorporate pilot technique and also add

realism. Solutions are compared at the high hover point, the 10 knot point on the

upper portion of the curve and at the low hover point. Time histories for the states,

controls, Hamiltonians and mesh histories are available in Appendix A.

4.5.1 Nine State Model Minimizing Initial Altitude

Originally, a nine state model was used and initial altitude was either minimized

(for the upper portion) or maximized (for the lower portion) using the following
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objective function:

J = ±h0 (4.1)

Two issues became evident in the solutions: first, the final time to conduct an opti-

mal descent was excessive when compared to flight test time histories, and second,

the control histories for the solutions demonstrate a phenomenon similar to rate lim-

iting, with the controls instantaneously jumping from one bound to another. The

time required for the optimal descent from 131 feet was approximately 35 seconds.

Comparing with Fig. E-40 through E-42 from the AH-1Z HV test report [29], the

flight test helicopter reached the ground in approximately 22 seconds. The oscilla-

tions in the control solution is shown below in Fig. 4.10. It was assessed that the

Figure 4.10. Optimal Control History Using 9 State Model

dynamic model engine governor moved out of phase with small changes in the power

required, resulting in large CT changes which exacerbated the oscillations and caused

the rapidly fluctuating control histories shown in Fig. 4.10.
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4.5.2 Nine State Model Minimizing Altitude and Weighted Final Time

The nine state model was improved by including weighted final time in the ob-

jective function, as shown in Eq. 4.2. Since the optimal control solution for this

formulation did not purely shrink the avoid region, it stands to reason that initial

altitudes using this objective function would be more conservative than those of the

solutions described in 4.5.1. For the high hover point, the final time was 28 seconds,

compared to the flight test time of 22 seconds. Strangely, the addition of final time

in the cost function resulted in a less conservative initial altitude for the high hover,

10 knot point and low hover point. Control oscillations were still evident.

J = ±h0 +Wtτf (4.2)

When bounds on rotor tip path plane angle and tip path plane rate were adjusted

appropriately, this formulation yielded initial altitudes that compared well with flight

test data. However, to demonstrate feasibility, means were sought to reduce the

oscillations in the ĊT and α̇ solutions. Additionally, the single phase version of this

solution method used to determine the lower portion of the HV curve did not converge

above five knots.

4.5.3 Eleven State Model Minimizing Altitude and Weighted Controls

The 11 state model displayed superior convergence and produced much more re-

alistic controls. Full solutions are shown in Appendix A. For a modest cost in compu-

tation time, oscillations in the control solution was substantially reduced, using the

objective function shown in Eq. 4.3.

J = ±h0 +

∫ tf

t0

(
W1u

2
1 +W2u

2
2

)
dt (4.3)
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4.5.4 Comparison of the Solution Methods

A comparison of optimal control results using the same bounds in three different

techniques is shown in Fig. 4.11. Significant differences are observed in the solutions

for the low and high hover heights. At the high hover, the 11 state model altitude is

nine feet above the nine state solution. At the low hover, the 11 state model altitude

is 4.5 feet below the nine state altitude. The maximum difference in solutions at

the 10 knot point is two feet. Although the nine state model with minimum final

time provided the closest match to flight test data, by adjusting the bounds, either

of the other two models could provide a closer match using different bounds. Fig.

4.11 demonstrates that although the control solutions are questionable, the nine state

model still provides initial altitude solutions which are comparable to those obtained

with more realistic control solutions.
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Figure 4.11. Comparison of Solutions from Different Optimal Control Formulations

4.6 Full HV Diagram for the AH-1Z

The HV diagram computed using the 11 state method is shown in Fig. 4.12.

Included in the diagram are the points determined using the nine state, weighted

final time formulation. The gap in the latter data set shows the area below the knee

point where convergence was not attained.

4.6.1 Shape of the HV Diagram

Compared to the diagram obtained by Carlson in [29], the HV diagram in 4.12

defines a smaller avoid region. The high hover point in 4.12 is lower, the low hover

point compares well to that of [29] and the knee point is less conservative. Also, the

diagram in 4.12 changes slope more frequently, both above and below the knee. This
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Figure 4.12. Resulting HV Diagram for the AH-1Z

is due to changes in the bounds on tip path plane angle and rate. It was noted during

development of the diagram that if the bounds were held constant, the diagram was

more linear in nature (though with very different values).

The increase in altitude for the lower portion of the curve in 4.12 may be caused

by inaccuracies in the dynamic model. Specifically, the ground effect factor which

directly modifies CT was calculated with no dependence on advance ratio. Johnson

[4] stated that ground effect is reduced as forward velocity is increased. Reduced

ground effect for the lower portion of the HV curve may have the effect of flattening

this portion, similarly to Carlson’s diagram.
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4.6.2 Identifying the Knee Point

Convergence was problematic in the vicinity of the knee point, for both the upper

portion method and lower portion method. Bounds on the tip path plane angle and

rate were continually reduced and convergence was attained at a 12 knot point using

the single phase formulation for the lower portion.

The bounds used for rotor TPP plane angle and rate were reduced even further

to ±5 deg and ±5 deg per second respectively. Additional solutions were attempted

with the initial airspeed set to 13 knots (using the single phase method) and 14 knots

(using the two phase method). Both methods were able to minimize the h0 portion of

the objective function to zero, with a corresponding near-zero, near-constant Hamil-

tonian. This indicated that no restriction existed at the initial airspeed. The bounds

on initial height which were used are depicted in Fig. 4.13. At the airspeeds shown,

this indicates that a safe landing is possible if the pilot exceeds the bounds listed

above. This further shows that while the knee may not be well defined by numerous

converged solutions, it does not extend past 14 knots.
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Figure 4.13. Determining Where the Knee is Not

4.7 Induced Velocity Investigation

The method of induced velocity calculation developed by Johnson in [2] was sub-

sequently used in [24], [19], [21] and [29]. The results of the current research are

presented using an updated calculation for induced velocity published by Johnson in

[23]. Johnson developed the new model to account for the effects of vortex ring state

(VRS). As can be seen in Fig. 4.14, the new model calculates a much wider range

of induced velocity than the old model. Note that the curves labeled Baseline and

VRS are all part of the new model. The dashed lines depict calculations using the

old model. The continuous function used by GPOPS-II® was altered to calculate

induced velocity using the old method for comparison with the results of this research

which utilized the newer method. Comparing results for the high hover point, data
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Figure 4.14. Comparison of Induced Velocity Models

are presented in Figures 4.15 and 4.16. Clearly the solutions for rotor inflow, and the

full optimal control solutions differ from each other. (The difference in initial altitude

was 5 feet). However, these plots do not tell the full story, since GPOPS-II® oper-

ated differently with the different models. The algorithm was free to avoid VRS when

using the new model and therefore it cannot be determined whether VRS conditions

were definitely present.
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Figure 4.15. Optimal Control Rotor Inflow Comparison
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Figure 4.16. Optimal Control Solution Comparison
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For a valid direct comparison, the optimal CT and α calculated from the high hover

using the old model were integrated with ode45 using the new rotor inflow model in

a closed loop simulation. Results are shown in Figures 4.17 and 4.18. As may be

observed in Fig. 4.17, higher inflow is calculated using the new inflow model for the

initial portion of the descent, but as the horizontal velocity increases, the two solutions

vary considerably. The results of the closed-loop simulation vary considerably from

the optimal control solution. It may be deduced from this comparison that the more

accurate rotor inflow model of [23] affects the HV solution considerably.

Figure 4.17. Optimal Inflow with Old Inflow Model Integrated using New Inflow Model
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Figure 4.18. Optimal Solution with Old Inflow Model Integrated using New Inflow
Model
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V. Conclusions and Recommendations

5.1 Conclusions

The major objectives of this research, as stated in Chapter 1, were accomplished.

A helicopter dynamic model was developed and validated. GPOPS-II® was used to

solve an optimal control problem of the helicopter dynamic model in a single-engine

failure scenario. Multiple iterations of this solution determined the entire Height-

Velocity (HV) diagram. The effects of pilot technique were incorporated using state

constraints. The solution procedure is easily adaptable to different platforms, by tai-

loring the parameters listed in Appendix E. Finally, the effect of different induced

velocity calculation methods was examined. Conclusions from these research objec-

tives are summarized below.

5.1.1 Helicopter Model Validation

The helicopter model described in Chapter 3 was validated using level flight per-

formance data and flight test time histories. Efficiency factors for the main and tail

rotor, an induced velocity correction factor and a flat plate drag correction factor

were sufficient to adjust the model to match level flight performance data. Result-

ing open-loop simulations were satisfactorily compared with flight test time histories.

The new method used to calculate rotor inflow had a noticeable effect on the trajec-

tories. It is assessed that the rotor inflow method partially accounted for differences

from Carlson’s results [29].

5.1.2 Solution Using GPOPS-II®

GPOPS-II® was successfully used to solve for an optimal helicopter descent.

This optimal descent included two phases, a free initial condition, open final time,
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inequality constraints placed on all variables, unknown singular arcs, and a partially

constrained final condition. With inputs matched to previous methods, the HV so-

lution using GPOPS-II® was significantly less conservative. The previous method

of Carlson [29], used SNOPT with a fixed collocation interval as compared to the

adaptive mesh methods of GPOPS-II®. It is possible that the adaptive meshing of

the GPOPS-II® software partially accounted for differences from Carlson’s results.

The optimal control problem was based on minimizing initial altitude when com-

puting points above the knee of the HV curve, or maximizing the initial altitude

when computing points below the knee. This formulation prevented iterations on ini-

tial airspeed, but caused problems with convergence in the vicinity of the knee point.

By tightening bounds on certain states, convergence was achieved near the knee, but

precise definition of the knee point was not possible.

5.1.3 Nine State versus Eleven State Model

Results from a nine state model were compared with results from an eleven state

model. The nine state model utilized the first derivatives of thrust coefficient and tip

path plane angle as controls. The 11 state model used the second derivatives of the

same variables as controls. The 11 state model allowed minimization of the controls,

and produced much more feasible solutions for the thrust coefficient and tip path

plane angle rates, as compared to the nine state model. However, the initial altitudes

calculated by the two programs were similar. The 11 state model is recommended

due to the improved control solutions.

5.1.4 Proper Adjustment of Bounds

Accurate solution methods did not automatically equate with solutions which

matched flight test results. Proper selection of path constraints, in the form of bounds
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on the controls and states, was crucial in achieving optimal initial altitudes that

compared with those determined through flight test. Proper bounds represented not

only physical characteristics and limitations of the aircraft but also pilot technique.

A technique of matching areas under pitch attitude time history curves to the area

underneath optimal control tip path plane angle trajectories was successfully used to

match flight test data.

To utilize the methods developed by this research, detailed knowledge must be

obtained for how the aircraft is flown during a single-engine failure. This is best

obtained from flight test time histories, but detailed descriptions of simulated single-

engine failures by qualified pilots may be sufficient.

5.1.5 Usage of the Hamiltonian

GPOPS-II® provides co-state estimates which were used to approximate the

Hamiltonian. The Hamiltonian was useful during this research for selecting appropri-

ate tolerances during a convergence study and for identification of the HV diagram

knee point.

5.2 Recommendations for Future Improvements

The results obtained in this research could be improved by changes in the aircraft

model, a better method for providing an initial guess, incorporating pilot technique

in the cost function and by examining the solution method using different density

altitudes and different aircraft. These recommendations are discussed below.

5.2.1 Improvements to the Dynamic Model

The ground effect calculation used in this research was only valid in hovering flight

and did not include any dependence on forward velocity. This meant that ground
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effect was overestimated at higher airspeeds. The airspeeds reached during solutions

were not extreme, but incorporation of a µ term into the ground effect calculation

would improve the results.

The power required for the main and tail rotor was calculated using momentum

theory modified with certain elements of blade element theory. Blade element theory

could be used entirely. Table lookups with rotor airfoil tables and numerical inte-

gration of the rotor disk would incorporate the effects of compressibility, blade stall,

blade twist and changes in blade shape from root to tip. This would also enable the

control to be changed from thrust coefficient to blade pitch angle, more accurately

modeling the pilot-aircraft system.

5.2.2 Initial Guess

The GPOPS-II® program requires an initial guess for the solution of each state

and control trajectory. A fairly coarse guess was used in this research, and was only

scaled by altitude. A better process to provide guesses for the algorithm would likely

result in more accurate, predictable solutions. Particle swarm optimization [35] and

genetic algorithms [36] both hold promise to improve initial guess generation.

5.2.3 Automatic Bound Adjustment

As described in Section 5.1.4, the method of matching areas under pitch attitude

time history curves to the area underneath optimal control tip path plane angle

trajectories may be automated by incorporating the difference between the two areas

into the cost function. With an appropriate weighting factor this addition could

potentially yield the same results attained in this research without adjustment of

constraints at each point on the HV diagram.
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5.2.4 Effects of Referred Gross Weight and Different Aircraft

Using the methods of this research, an optimal control solution can be calibrated

with flight test data. The method may be utilized to provide HV solutions which

were not completed in flight test. Before this can be accurately accomplished, further

investigations are required. The method described above for determining appropriate

state and control bounds should be investigated at different referred gross weight

conditions as this research considered only a single condition.

Finally, further validation of the methodology is required using one or preferably

multiple different aircraft. It my be that implicit assumptions used on the case study

aircraft do not apply to all platforms.

5.3 Summary

The current research constructed a dynamic model for a traditional helicopter

which incorporated an improved induced velocity calculation. The dynamic model

was used to frame a multi-phase, open final time, partially constrained initial state,

partially constrained final state optimal control problem. The GPOPS-II® software

suite was used to solve for the optimal initial altitude at given initial airspeeds. The

result of this procedure was an analytically determined HV diagram for the AH-1Z

Cobra at a single gross weight and single density altitude. This research provided the

Naval Air Systems Command with a method to analytically calculate HV diagrams

for traditional helicopters and provided modest advancements in the field of HV

determination.
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Appendix A. Selected Results for the AH-1Z

A.1 High Hover

A.1.1 Nine State Model, Minimizing Altitude Only

Figure A.1. High Hover, 9 State Model, J = h0

85



(a) Controls

(b) Hamiltonian

Figure A.2. High Hover, 9 State Model, J = h0, Controls and Hamiltonian
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Figure A.3. High Hover, 9 State Model, J = h0, Mesh History
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A.1.2 Nine State Model, Minimizing Altitude and Final Time

Figure A.4. High Hover, 9 State Model, J = h0 +Wtτf
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(a) Controls

(b) Hamiltonian

Figure A.5. High Hover, 9 State Model, J = h0 +Wtτf , Controls and Hamiltonian

89



Figure A.6. High Hover, 9 State Model, J = h0 +Wtτf , Mesh History
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A.1.3 11 State Model, Minimizing Altitude and Controls

Figure A.7. High Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(W1u
2
1 +W2u

2
2)dt
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(a) CT and α Rates

(b) Controls

Figure A.8. High Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Rates and

Controls
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(a) Hamiltonian

(b) Mesh History

Figure A.9. High Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Hamiltonian

and Mesh History
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A.2 10 Knot Point on Upper Portion of Curve

A.2.1 Nine State Model, Minimizing Altitude Only

Figure A.10. 10 Knot Point, 9 State Model, J = h0
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(a) Controls

(b) Hamiltonian

Figure A.11. 10 Knot Point, 9 State Model, J = h0, Controls and Hamiltonian
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Figure A.12. 10 Knot Point, 9 State Model, J = h0, Mesh History
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A.2.2 Nine State Model, Minimizing Altitude and Final Time

Figure A.13. 10 Knot Point, 9 State Model, J = h0 +Wtτf
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(a) Controls

(b) Hamiltonian

Figure A.14. 10 Knot Point, 9 State Model, J = h0 +Wtτf , Controls and Hamiltonian
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Figure A.15. 10 Knot Point, 9 State Model, J = h0 +Wtτf , Mesh History
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A.2.3 11 State Model, Minimizing Altitude and Controls

Figure A.16. 10 Knot Point, 11 State Model, J = ±h0 +
∫ tf
t0

(W1u
2
1 +W2u

2
2)dt
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(a) CT and α Rates

(b) Controls

Figure A.17. 10 Knot Point, 11 State Model, J =
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Rates and

Controls
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(a) Hamiltonian

(b) Mesh History

Figure A.18. 10 Knot Point, 11 State Model, J = ±h0+
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Hamiltonian

and Mesh History
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A.3 Low Hover

A.3.1 Nine State Model, Minimizing Altitude Only

Figure A.19. Low Hover, 9 State Model, J = h0
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(a) Controls

(b) Hamiltonian

Figure A.20. Low Hover, 9 State Model, J = h0, Controls and Hamiltonian
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Figure A.21. Low Hover, 9 State Model, J = h0, Mesh History
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A.3.2 Nine State Model, Minimizing Altitude and Final Time

Figure A.22. Low Hover, 9 State Model, J = h0 +Wtτf
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(a) Controls

(b) Hamiltonian

Figure A.23. Low Hover, 9 State Model, J = h0 +Wtτf , Controls and Hamiltonian
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Figure A.24. Low Hover, 9 State Model, J = h0 +Wtτf , Mesh History
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A.3.3 11 State Model, Minimizing Altitude and Controls

Figure A.25. Low Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt
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(a) CT and α Rates

(b) Controls

Figure A.26. Low Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Rates and

Controls
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(a) Hamiltonian

(b) Mesh History

Figure A.27. Low Hover, 11 State Model, J = ±h0 +
∫ tf
t0

(
W1u

2
1 +W2u

2
2

)
dt, Hamiltonian

and Mesh History
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Appendix B. Input Data and Results for Height Velocity
Diagram Solutions

B.1 Nine State Model, Minimizing Altitude and Final Time

B.1.1 Upper Portion of Curve

Table B.1. HV Data and Inputs, 9 States, Upper Portion

Given u0 (kts) 0 5 9 10 12 13
Solution h0 (kts) 128 114 97 85 66 51
Solution tf 28 19 22 20 19 17
Mesh Tolerance 1x10−4 1x10−4 1x10−4 1x10−4 1x10−4 1x10−4

NLP Tolerance 1x10−6 1x10−6 1x10−6 1x10−6 1x10−6 1x10−6

Derivative Stepsize 1x10−8 1x10−8 1x10−8 1x10−8 1x10−8 1x10−8

h0 Guess (kts) 143 115 100 85 65 50
h0 Lower Bound (kts) 40 40 40 40 40 40
h0 Upper Bound (kts) 300 400 300 300 300 200
τf Guess 12 10 12 10 10 10
Max x1 Guess 4 4 4 4 4 4
Max x2 Guess 10 10 10 10 10 10
α Lower Bound (deg) -11 -8 -6 -6 -6 -6
α Upper Bound (deg) 11 8 6 6 6 6
α̇ Lower Bound (deg/sec) -12 -10 -7 -7 -7 -7
α̇ Upper Bound (deg/sec) 12 10 7 7 7 7

112



B.1.2 Lower Portion of Curve

Table B.2. HV Data and Inputs, 9 States, Lower Portion

Given u0 (kts) 0 2 4 5
Solution h0 (kts) 15 14 23 19
Solution tf 3.6 5.3 5.4 5.8
Mesh Tolerance 1x10−4 1x10−4 1x10−4 1x10−4

NLP Tolerance 1x10−8 1x10−7 1x10−6 1x10−7

Derivative Stepsize 1x10−9 1x10−8 1x10−8 1x10−8

h0 Guess (kts) 15 14 25 19
h0 Lower Bound (kts) 1 1 1 1
h0 Upper Bound (kts) 40 25 40 25
τf Guess 4 2 6 8
Max x1 Guess 4 4 2 4
Max x2 Guess 4 4 2 4
α Lower Bound (deg) -5 -5 -10 -5
α Upper Bound (deg) 5 5 10 5
α̇ Lower Bound (deg/sec) -5 -5 -5 -5
α̇ Upper Bound (deg/sec) 5 5 5 5
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B.2 Eleven State Model, Minimizing Altitude and Controls

B.2.1 Upper Portion of Curve

Table B.3. HV Data and Inputs, 11 States, Upper Portion

Given u0 (kts) 0 2.5 5 7 10 10.5
Solution h0 (kts) 136 124 117 108 83 75
Solution tf 29 25 21 18 17 48
Mesh Tolerance 1x10−4 1x10−4 1x10−4 1x10−4 1x10−4 1x10−4

NLP Tolerance 1x10−6 1x10−6 1x10−6 1x10−6 1x10−6 1x10−6

Derivative Stepsize 1x10−8 1x10−8 1x10−8 1x10−8 1x10−8 1x10−8

h0 Guess (kts) 137 130 116 105 89 78
h0 Lower Bound (kts) 30 40 30 40 40 40
h0 Upper Bound (kts) 300 200 200 200 200 200
τf Guess 15 15 15 15 12 15
Max x1 Guess 8 8 8 8 8 8
Max x2 Guess 10 10 10 10 10 10
α Lower Bound (deg) -11 -9.5 -8 -7 -6 -6
α Upper Bound (deg) 11 9.5 8 7 6 6
α̇ Lower Bound (deg/sec) -12 -11 -10 -8 -7 -7
α̇ Upper Bound (deg/sec) 12 11 10 8 7 7
α̈ Lower Bound (deg/sec2) -40 -40 -40 -40 -40 -40
α̈ Upper Bound (deg/sec2) 40 40 40 40 40 40
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B.2.2 Lower Portion of Curve

Table B.4. HV Data and Inputs, 11 States, Lower Portion

Given u0 (kts) 0 2 5 8 10 11 12
Solution h0 (kts) 11 13 16 19 20 20 42
Solution tf 3.3 3 5.1 4 4.5 4.1 4
Mesh Tolerance 1x10−4 1x10−4 1x10−4 1x10−4 1x10−5 1x10−5 1x10−5

NLP Tolerance 1x10−6 1x10−6 1x10−6 1x10−6 1x10−5 1x10−5 1x10−5

Derivative Stepsize 1x10−8 1x10−8 1x10−8 1x10−8 1x10−9 1x10−8 1x10−8

h0 Guess (kts) 9 12 16 19 20 20 35
h0 Lower Bound (kts) 1 1 1 1 1 1 10
h0 Upper Bound (kts) 40 40 40 30 40 40 80
τf Guess 4 4 4 4 10 10 10
Max x1 Guess 2 2 2 2 4 4 4
Max x2 Guess 2 2 2 2 4 4 4
α Lower Bound (deg) -6 -6 -6 -6 -5 -6 -4
α Upper Bound (deg) 6 6 6 6 5 6 4
α̇ Lower Bound (deg/sec) -7 -7 -7 -7 -5 -7 -4
α̇ Upper Bound (deg/sec) 7 7 7 7 5 7 4
α̈ Lower Bound (deg/sec2) -15 -15 -15 -15 -15 -20 -15
α̈ Upper Bound (deg/sec2) 15 15 15 15 15 20 15

115



Appendix C. Solution Guess and Convergence Study

C.1 Solution Guess

Three values were assigned to each state and control for the solution guess. The

resulting three column matrix is depicted below for the indicated problem segment.

Table C.1. Phase 1 Guess for Upper Portion of Curve

Variable 1st Value 2nd Value 3rd Value
τ 0 0.5τfguess τfguess
x1 x11 x1maxg 0
x2 x21 x2maxg 2
x3 x31 0.98 0.95
x4 x40 0.5x41 0.25x41

x5 x51 1 3
x6 x61 0 0
x7 x71 1 1
x8 x81 x81 x81

x9 x91 x91 x91

x10 0 0 0
x11 0 0 0
u1 1 1 1
u2 0 0 0
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Table C.2. Phase 2 Guess for Upper Portion of Curve

Variable 1st Value 2nd Value 3rd Value
τ τfguess + 0.1 τfguess + 0.5 τfguess + 1
x1 0 1 0
x2 2 1 0
x3 0.96 0.95 0.92
x4 0.2x41 0.05 0
x5 3.1 3.5 4
x6 0 0 0
x7 0.9 1 1
x8 x81 x81 x81

x9 x9lop2 x9lop2 x9f

x10 0 0 0
x11 0 0 0
u1 1 1 1
u2 0 0 0

Table C.3. Guess for Lower Portion of Curve

Variable 1st Value 2nd Value 3rd Value
τ 0 0.5τfguess τfguess
x1 x11 x1maxg 0
x2 x21 x2maxg 2
x3 x31 0.98 0.95
x4 x40 0.5x41 0
x5 x51 1 3
x6 x61 0 0
x7 x71 1 1
x8 x81 x81 x81

x9 x91 x91 x91

x10 0 0 0
x11 0 0 0
u1 1 1 1
u2 1 1 1
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C.2 Convergence Study

A convergence study was conducted to determine sufficient values for the mesh and

nonlinear programming (NLP) tolerances. Note that the bounds on pitch angle were

different during this study than those used in the end solution, yielding a different

initial altitude from results in Chapter 4.

Table C.4. Convergence Study Part 1

Mesh NLP Hamiltonian
Tolerance Tolerance h0 RMS Error

1x10−1 1x10−1 173 6.40x108

1x10−2 1x10−1 169 6.60x108

1x10−3 1x10−1 169 1.19x108

1x10−1 1x10−2 176 2.67x108

1x10−2 1x10−2 171 0.68
1x10−3 1x10−2 168 0.04
1x10−4 1x10−2 144 0.04

1x10−1 1x10−3 171 4.65
1x10−2 1x10−3 171 4.65
1x10−3 1x10−3 168 0.41
1x10−4 1x10−3 161 0.60

1x10−1 1x10−4 164 0.31
1x10−2 1x10−4 158 0.78
1x10−3 1x10−4 157 1.20
1x10−4 1x10−4 130 0.01
1x10−5 1x10−4 130 0.01
1x10−6 1x10−4 130 0.01
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Table C.5. Convergence Study Part 2

Mesh NLP Hamiltonian
Tolerance Tolerance h0 RMS Error

1x10−1 1x10−5 164 0.31
1x10−2 1x10−5 162 0.24
1x10−3 1x10−5 156 0.77
1x10−4 1x10−5 130 0.01
1x10−5 1x10−5 130 0.01
1x10−6 1x10−5 130 0.01

1x10−1 1x10−6 160 0.06
1x10−2 1x10−6 129 0.01
1x10−3 1x10−6 129 0.02
1x10−4 1x10−6 129 0.01
1x10−5 1x10−6 129 0.01

1x10−1 1x10−7 130 0.01
1x10−2 1x10−7 130 0.01
1x10−3 1x10−7 130 0.01
1x10−4 1x10−7 130 0.01
1x10−5 1x10−7 130 0.01

1x10−1 1x10−8 132 0.01
1x10−2 1x10−8 131 0.01
1x10−3 1x10−8 129 0.02
1x10−4 1x10−8 129 0.01

1x10−1 1x10−9 131 0.01
1x10−2 1x10−9 130 0.01
1x10−4 1x10−9 130 0.02
1x10−5 1x10−9 130 0.01
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Appendix D. MATLAB Code

D.1 Code Utilized During Research

This appendix contains the MATLAB®m files and functions used to compute

the Height-Velocity (HV) diagram. In the GPOPS-II® main file, two functions were

called to determine initial conditions prior to engine failure and to integrate the

dynamics equations to mimic pilot delay. These two functions are listed first. The

next series of function files was the method used to calculate induced velocity, taking

into account vortex ring state, from Johnson’s work in[23]. Finally, the GPOPS-II®

main file is listed along with the continuous function and endpoint function which are

needed to run the main file.

D.2 Initial Condition Function

%-------------------------------------------------%
%----------- Begin Function: AH1Init ------------ %
%-------------------------------------------------%
function dxp = AH1init_v2o(x,x0,const)

% Read in known initial conditions
x1 = x0(1); x2 = x0(2); x3 = x0(3); x4 = x0(4);

% This is what the function solves:
x7 = x(1); x8 = x(2); x9 = x(3);
x6 = x7;

% Assign auxdata to structure "const"
useVRS = const.useVRS;
g0 = const.g0;
m0 = const.m0;
f0z = const.f0z;
f0x = const.f0x;
i0 = const.i0;
M = const.M;
Mtr = const.Mtr;
etaMR = const.etaMR;
etaTR = const.etaTR;
etaCBOX = const.etaCBOX;
HPacc = const.HPacc;
p1 = const.p1;
p2 = const.p2;
p3 = const.p3;
p4 = const.p4;
pt = const.pt;
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Poei = const.Poei;
R = const.R;
hh = const.hh;
fv = const.fv ;
x2w = const.x2w;
ki = const.ki;

%---- Calculate Ground Effect --------------------%
z = max(hh+10.*R.*x4,hh);
% Hayden
kg = (0.9926 + 0.03794.*(z./(2*R)).^-2).^(2/3);
kg(z>(2*R)) = 1;

%---- Calculate Washout --------------------------%
fw = 1-1/x2w*abs(x2);
fw(x2>x2w) = 0;

%---- Aerodynamic Model---------------------------%
% Calculate Johnson’s mux = Vx_rotor/vh, muz = -Vz_rotor/vh
% updated with revised equations for mu
mux = 0.4472./(x3.*sqrt(x8)).*(x2.*cos(x9) + x1.*sin(x9));
muz = 0.4472./(x3.*sqrt(x8)).*(x2.*sin(x9) - x1.*cos(x9));

lam_i_J = ones(length(x1),1);

for m = 1:length(x1)
% Call getInducedVelocityVRS.m to obtain lambda_i
lam_i_J(m) = getInducedVelocityVRS3(mux(m),muz(m),useVRS);
end

% Regular mu, and lambda_i
mu = 0.01./x3.*(x2.*cos(x9) + x1.*sin(x9));
lam_i = 0.0224.*lam_i_J.*(x8).^.5;

%---- End Aerodynamic Model-----------------------%

%---- Calculate Power Requred -------------------%

% Main Rotor
Cp_mr = ki.*lam_i.*x8./1000 + p1.*(1+4.65.*mu.^2) + p2.*mu.^3 - p3.*x1./x3.^3;
Pr_mr = 1/M.*p4.*Cp_mr.*x3.^3;

% Tail Rotor
Pr_tr = (1-1.2*mu)*1./Mtr.*sqrt(Pr_mr.^3./(pt.*x3.^3));

% Total P_req including accessories and losses
Pr = (Pr_mr/etaMR+Pr_tr/etaTR+HPacc*550)/etaCBOX;
pr1 = Pr./Poei;

%---- Calculate Derivatives ----------------------%
dx1p = g0 - m0.*x3.^2.*x8.*(kg-fv.*fw).*cos(x9) - ...

f0z.*x1.*sqrt(x1.^2+x2.^2);
dx2p = m0.*x3.^2.*x8.*(kg-fv.*fw).*sin(x9) - ...

f0x.*x2.*sqrt(x1.^2+x2.^2);
dx3p = i0./x3.*(x6+x7-pr1);

dxp = [dx1p, dx2p, dx3p]’;
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D.3 Pilot Delay Function

%-------------------------------------------------%
% ------- Begin Function: AH-1Z Dynamics ------- %
%-------------------------------------------------%
function dxp = ah1zdelay13(t,x,u1,u2,const)

x1 = x(1); x2 = x(2); x3 = x(3); x4 = x(4); %x5 = x(5);
x6 = x(6); x7 = x(7); x8 = x(8); x9 = x(9);
x10 = x(10); x11 = x(11);

%--- Retrieve Constants from structure -----------%
useVRS = const.useVRS;
g0 = const.g0;
m0 = const.m0;
f0z = const.f0z;
f0x = const.f0x;
i0 = const.i0;
k1 = const.k1;
k2 = const.k2;
G1 = const.G1;
M = const.M;
Mtr = const.Mtr;
etaMR = const.etaMR;
etaTR = const.etaTR;
etaCBOX = const.etaCBOX;
HPacc = const.HPacc;
ki = const.ki;
p1 = const.p1;
p2 = const.p2;
p3 = const.p3;
p4 = const.p4;
pt = const.pt;
Poei = const.Poei;
% loss = const.loss;
R = const.R;
hh = const.hh;
fv = const.fv ;
x2w = const.x2w;
tref = const.tref;

%---- Calculate Ground Effect --------------------%
z = max(hh+10.*R.*x4,hh);
% Hayden
kg = min((0.9926 + 0.03794.*(z./(2*R)).^-2).^(2/3),1.3);
kg(z>(2*R)) = 1;

%---- Calculate Washout --------------------------%
fw = 1-1/x2w.*abs(x2);
fw(x2>x2w) = 0;

%---- Aerodynamic Model---------------------------%
% Calculate Johnson’s mux = Vx_rotor/vh, muz = -Vz_rotor/vh
% updated with revised equations for mu
mux = 0.4472./(x3.*sqrt(x8)).*(x2.*cos(x9) + x1.*sin(x9));
muz = 0.4472./(x3.*sqrt(x8)).*(x2.*sin(x9) - x1.*cos(x9));

lam_i_J = ones(length(x1),1);

for m = 1:length(x1)
% Call getInducedVelocityVRS.m to obtain lambda_i
lam_i_J(m) = getInducedVelocityVRS3(mux(m),muz(m),useVRS);
end

% Regular mu, and lambda_i
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mu = 0.01./x3.*(x2.*cos(x9) + x1.*sin(x9));
lam_i = 0.0224.*lam_i_J.*(x8).^.5;
% lam = 0.01./x3.*(x2.*sin(x9) - x1.*cos(x9)) + 0.0224.*lam_i.*x8.^.5;

%---- End Aerodynamic Model-----------------------%

%---- Calculate Power Requred -------------------%
% Main Rotor
Cp_mr = ki.*lam_i.*x8./1000 + p1.*(1+4.65.*mu.^2) + p2.*mu.^3 - p3.*x1./x3.^3;
Pr_mr = 1/M.*p4.*Cp_mr.*x3.^3;
% Tail Rotor
Pr_tr = (1-1.2*mu)*1./Mtr.*sqrt(Pr_mr.^3./(pt.*x3.^3));
% Total P_req including accessories and losses
Pr = (Pr_mr/etaMR+Pr_tr/etaTR+HPacc*550)/etaCBOX;
pr1 = Pr./Poei;

%--- Calculate Governed Engine Power Available --%
p2g = min(pr1 - G1.*(x3-1),1);
p2g(p2g<0) = 0;

%---- Calculate Derivatives ----------------------%
dx1p = g0 - m0.*x3.^2.*x8.*(kg-fv*fw).*cos(x9) - ...

f0z.*x1.*sqrt(x1.^2+x2.^2);
dx2p = m0.*x3.^2.*x8.*(kg-fv*fw).*sin(x9) - ...

f0x.*x2.*sqrt(x1.^2+x2.^2);
dx3p = i0./x3.*(x6+x7-pr1);
dx4p = -0.1.*x1;
dx5p = 0.1.*x2;
dx6p = -k1.*x6;
dx7p = zeros(length(x1),1);
for nn = 1:length(x1)

if t(nn) > .1548
dx7p(nn) = k2.*(p2g(nn)-x7(nn));
end

end
dx8p = tref.*x10;
dx9p = tref.*x11;
dx10p = tref.*u1;
dx11p = tref.*u2;
dxp = [dx1p, dx2p, dx3p, dx4p, dx5p, ...

dx6p, dx7p, dx8p, dx9p, dx10p, dx11p]’;

%-------------------------------------------------%
% -------- End Function: AH-1Z Dynamics -------- %
%-------------------------------------------------%

D.4 Induced Velocity Functions

D.4.1 Baseline Induced Velocity

function [lambda_i, dlambda_i] = getInducedVelocityBaseline3(mu_x, mu_z, mu_zAID, mu_zBID, VRS)
%
% Calculate induced velocity and induced velocity slope from the baseline
% curve as defined by Johnson in NASA/TP-2005-213477.
%
% Input:
% mu_x = nondimensional rotor horizontal velocity, V_x/v_h
% mu_z = nondimensional rotor vertical velocity, by V_z/v_h
% mu_zAID = nondimensional rotor vertical velocity at point A, V_zAID/v_h
% mu_zBID = nondimensional rotor vertical velocity at point B, V_zBID/v_h
% VRS = vortex ring state parameters
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% Output:
% lambda_i = nondimensional rotor induced velocity, v_i/v_h
% dlambda_i = nondimensional slope of rotor induced velocity,
% dlambda_i/dmu_z

if(mu_z >= 0.0 || mu_x >= VRS.mu_xC)
[lambda_i, dlambda_i] = getInducedVelocityMomentum3(mu_x, mu_z);

else
if(mu_zBID < mu_z && mu_z < mu_zAID)

[lambdaA, dlambdaA] = getInducedVelocityMomentum3(mu_x, mu_zAID);
[lambdaB, ~] = getInducedVelocityMomentum3(mu_x, mu_zBID);
coeffB = solveInducedVelocity(3, mu_zAID, mu_zBID, lambdaA, dlambdaA, lambdaB, 0.0);
b = coeffB(2);
c = coeffB(3);
d = coeffB(4);
lambda_i = mu_z*(b + mu_z*(c + mu_z*d));
dlambda_i = b + mu_z*(2.0*c + 3.0*mu_z*d);

else
[lambda_i, dlambda_i] = getInducedVelocityMomentum3(mu_x, mu_z);

end
end

end

D.4.2 Momentum Theory Induced Velocity

function [lambda_i, dlambda_i] = getInducedVelocityMomentum3(mu_x, mu_z)
%
% Calculate induced velocity and induced velocity slope using momentum theory
%
% Input:
% mu_x = nondimensional rotor horizontal velocity, V_x/v_h
% mu_z = nondimensional rotor vertical velocity, V_z/v_h
% Output:
% lambda_i = nondimensional rotor induced velocity, v_i/v_h
% dlambda_i = nondimensional slope of rotor induced velocity,
% dlambda_i)/dmu_z
%

if(mu_x < 0.000001)
if(mu_z > -2.0)

lambda_i = -(0.5*mu_z) + sqrt((0.5*mu_z)^2 + 1.0);
dlambda_i = -0.5 + 0.25*mu_z/sqrt((0.5*mu_z)^2 + 1.0);

elseif(mu_z == -2.0)
lambda_i = 1.0;
dlambda_i = 10000.0;

else
lambda_i = -(0.5*mu_z) - sqrt((0.5*mu_z)^2 - 1.0);
dlambda_i = -0.5 - 0.25*mu_z/sqrt((0.5*mu_z)^2 - 1.0);

end
else
lambda = newtonraphsonlambda(mu_x,mu_z);
lambda_i = lambda-mu_z;

% fInduced = @(lambda_i)(1 - lambda_i*sqrt(mu_x^2 + (mu_z + lambda_i)^2));
% lambda_i = fzero(fInduced, 1);

dlambda_i = -lambda_i*(mu_z + lambda_i)/(mu_x^2 + (mu_z + lambda_i)*(mu_z + 2.0*lambda_i));
end

end

D.4.2.1 Newton-Raphson Solution of the Momentum Quartic

function lam = newtonraphsonlambda(mux, muz)

124



% Function to calculate induced velocity
% Follows Johnson’s Textbook page 126

% mu_x = ucos(alpha)+wsin(alpha)/vh
% mu_z = usin(alpha)-wcos(alpha)/vh

f = 0.5; % Relaxation factor for improved convergence
tol = 1e-6; % convergence tolerance
err = 1;
lam = (mux^2+(1+muz)^2)^-.5+muz;

while err >= tol

lam_i = (mux^2+lam^2)^-.5;
lam_new = lam - (lam - muz - lam_i)/(1+lam_i*lam/(lam^2+mux^2))*f;
err = abs(lam_new-lam);
lam = lam_new;

end

D.4.3 VRS Region Induced Velocity

function lambda_i = getInducedVelocityVRS3(mu_x, mu_z,VRS_On)
%
% Calculate the rotor induced velocity using Johnson’s method from
% NASA/TP-2005-213477.
%
% Input:
% mu_x = nondimensional rotor horizontal velocity, V_x/v_h
% mu_z = nondimensional rotor vertical velocity, V_z/v_h
% VRS_On = VRS flag (True = VRS on, False = VRS off)
% Output:
% lambda_i = nondimensional rotor induced velocity, v_i/v_h
%

% VRS constants
VRS.mu_zA = -1.5;
VRS.mu_zB = -2.1;
VRS.mu_xC = 0.75;
VRS.mu_zD = -0.2;
VRS.mu_zN = -0.45;
VRS.lambda_N = 0.85;
VRS.mu_zX = -1.5;
VRS.lambda_X = 1.25;
VRS.mu_zE = -2.0;
VRS.mu_xM = 0.95;
VRS.f = 1.0;

%
% Momentum theory and baseline curve

mu_zAID = VRS.mu_zA + 0.2*(mu_x/VRS.mu_xC)^2;
mu_zBID = VRS.mu_zB + 0.2*(mu_x/VRS.mu_xC)^2;
if(mu_x/VRS.mu_xC > 0.5)
mu_zBID = mu_zBID + 0.7*(mu_zAID - mu_zBID)*(2.0*mu_x/VRS.mu_xC - 1.0)^3;

end
[lambda_i, ~] = getInducedVelocityBaseline3(mu_x, mu_z, mu_zAID, mu_zBID,VRS);

%
% Vortex ring state model

if(VRS_On && mu_z < 0.0 && mu_x < VRS.mu_xM)
mu_zDID = VRS.mu_zD;
mu_zNID = 0.5*(VRS.mu_zN + VRS.mu_zX) + 0.5*(VRS.mu_zN - VRS.mu_zX)*(1.0 - (mu_x/VRS.mu_xM)^2)^0.2;
mu_zXID = 0.5*(VRS.mu_zN + VRS.mu_zX) - 0.5*(VRS.mu_zN - VRS.mu_zX)*(1.0 - (mu_x/VRS.mu_xM)^2)^1.5;
mu_zEID = VRS.mu_zE + (mu_zXID - VRS.mu_zX);

%
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if(mu_zEID < mu_z && mu_z < mu_zDID)
if(mu_zNID <= mu_z && mu_z < mu_zDID)
DlambdaD = 0.0;
DdlambdaD = 0.0;
[lambdaNmom, ~] = getInducedVelocityMomentum3(0.0, VRS.mu_zN);
DlambdaN = (VRS.lambda_N - (VRS.mu_zN + lambdaNmom))*sqrt(1.0 - (mu_x/VRS.mu_xM)^6);
[~, dlambdaNID] = getInducedVelocityBaseline3(mu_x, mu_zNID, mu_zAID, mu_zBID, VRS);
DdlambdaN = -(1.0 + dlambdaNID);
coeffV = solveInducedVelocity(4, mu_zDID, mu_zNID, DlambdaD, DdlambdaD, DlambdaN, DdlambdaN);

elseif(mu_zXID <= mu_z && mu_z < mu_zNID)
[lambdaNmom, ~] = getInducedVelocityMomentum3(0.0, VRS.mu_zN);
DlambdaN = (VRS.lambda_N - (VRS.mu_zN + lambdaNmom))*sqrt(1.0 - (mu_x/VRS.mu_xM)^6);
[lambdaXmom, ~] = getInducedVelocityMomentum3(0.0, VRS.mu_zX);
DlambdaX = (VRS.lambda_X - (VRS.mu_zX + lambdaXmom))*sqrt(1.0 - (mu_x/VRS.mu_xM)^6);
[~, dlambdaNID] = getInducedVelocityBaseline3(mu_x, mu_zNID, mu_zAID, mu_zBID, VRS);
DdlambdaN = -(1.0 + dlambdaNID);
[~, dlambdaXID] = getInducedVelocityBaseline3(mu_x, mu_zXID, mu_zAID, mu_zBID, VRS);
DdlambdaX = -(1.0 + dlambdaXID);
coeffV = solveInducedVelocity(4, mu_zNID, mu_zXID, DlambdaN, DdlambdaN, DlambdaX, DdlambdaX);

else
[lambdaXmom, ~] = getInducedVelocityMomentum3(0.0, VRS.mu_zX);
DlambdaX = (VRS.lambda_X - (VRS.mu_zX + lambdaXmom))*sqrt(1.0 - (mu_x/VRS.mu_xM)^6);
[~, dlambdaXID] = getInducedVelocityBaseline3(mu_x, mu_zXID, mu_zAID, mu_zBID, VRS);
DdlambdaX = -(1.0 + dlambdaXID);
DlambdaE = 0.0;
coeffV = solveInducedVelocity(3, mu_zXID, mu_zEID, DlambdaX, DdlambdaX, DlambdaE, 0.0);

end
a = coeffV(1);
b = coeffV(2);
c = coeffV(3);
d = coeffV(4);
DeltaVRS = a + mu_z*(b + mu_z*(c + mu_z*d));
lambda_i = lambda_i + VRS.f*DeltaVRS;

end
end

end

D.4.4 Solve the Induced Velocity

function coeff = solveInducedVelocity(n, mu_zA, mu_zB, lambdaA, dlambdaA, lambdaB, dlambdaB)
%

coeff = zeros(1, 4);
mtxA = [[1.0, mu_zA, mu_zA^2, mu_zA^3 ];

[0.0, 1.0, 2.0*mu_zA, 3.0*mu_zA^2];
[1.0, mu_zB, mu_zB^2, mu_zB^3 ];
[0.0, 1.0, 2.0*mu_zB, 3.0*mu_zB^2]];

vecB = [lambdaA ;
dlambdaA;
lambdaB ;
dlambdaB];

if(n == 3)
coeff(2:4) = mtxA(1:3,2:4)\vecB(1:3);

else
coeff = mtxA\vecB;

end
end
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D.5 GPOPS-II® Main File and Functions

D.5.1 GPOPS-II® Main File

%-------------------------------------------------------------------%
%----------------------- Two Phase Problem -------------------------%
%-------------------------------------------------------------------%
clear all; clc;

%-------------------------------------------------------------------%
%------------------------ Aircraft Inputs --------------------------%
%-------------------------------------------------------------------%
weight = 16200; % lbf 17940 gives power ratio of 0.7
omega0 = 30.0546; % Nominal Main Rotor speed (rad/sec)

% (for early prototypes, 287 rpm)
R = 24; % Main Rotor Radius (ft)
Rt = 4.875; % Tail Rotor Radius (ft)
Rcut = 6; % Rotor cutout (cuff radius)
tilt = 3; % Mast tilt in degrees
fex = 24.7; % ft^2 from design report
fez = 168.14; % Total equivalent planform flat plate area
fezv = 86.44; % Equivalent flat plate under rotor disk
Ir = 1362.3*4; % slug-ft^2 from
sigma = 0.1026; % Solidity Ratio
cd = 0.0078; % Average blade coefficient of drag
ki = 1.08; % Induced velocity correction factor
M = .88; % Main rotor efficiency
Mtr = .70; % Tail rotor efficienty
etaMR = .984; % Main rotor drive efficiency
etaTR = .98; % Tail rotor drive efficiency
etaCBOX = .986; % Combining gearbox efficiency
HPacc = 25; % Accessory drive horsepower
loss = 1.08; % Pr increase due to drivetrain/accessories
ltr = 29.343; % TR moment arm
Poei = 1580*550; % ft-lb/s (from HV Report)
G = 6e4; % DECU gain
tau1 = .5; % failed engine time constant
tau2 = .4; % OEI engine time constant
hh = 12.33; % Rotor hub height (for ground effect calc)
deltafe = 10; % fe_x fudge factor to make cp curves match (USED 7 EARLIER)

% ---------------------- Derived Constants ------------------------ %
g = 32.174; % gravitational accel
rho = 0.002377; % air density
mass = weight/g; % mass in slugs
tref = 100/omega0; % non-dim ref time
g0 = 1e4*g/(omega0^2*R); % for x1 equation
m0 = 10*rho*pi*R^3/mass; % for x2 equation
f0z = rho*fez*R/(2*mass); % for x1 equation
f0x = rho*fex*R/(2*mass); % for x2 equation
i0 = 100*Poei/(Ir*omega0^3); % for x3 equation
k1 = 100/(omega0*tau1); % for x6 equation
k2 = 100/(omega0*tau2); % for x7 equation
G1 = G*omega0/Poei; % equiv. gain for eng2 pwr
p1 = sigma*cd/8; % Cp term
p2 = (fex+deltafe)/(2*pi*R^2); % Cp term
p3 = .01*weight/(rho*pi*R^4*omega0^2); % Cp term
p4 = rho*pi*R^5*omega0^3; % Cp to Power term
pt = 2*rho*pi*Rt^2*ltr^3*omega0^3; % Cp_t term
fv = fezv/(pi*R^2-pi*Rcut^2); % Vertical drag factor
mtilt = deg2rad(tilt); % Mast tilt in radians

%-----------------User Input for new VRS Curve Fits-----------------%
useVRS = true;
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%------------------------ Washout Airspeed -------------------------%
% The speed at which rotor wash no longer impenges on the fuselage
v1 = 30; % knots
x2w = 1.68781*v1/(.01*omega0*R);

%----------------- Data Needed for Endpoint Fx J2 ------------------%
href = 30; % Obj function reference height
x4r = href/(10*R);

% Altitude where phases changeover
x4chng = 3/(10*R);

%-------------------------------------------------------------------%
%-------------------- Store constants in AUXDATA -------------------%
%-------------------------------------------------------------------%
auxdata.useVRS = useVRS;
auxdata.g0 = g0;
auxdata.m0 = m0;
auxdata.f0z = f0z;
auxdata.f0x = f0x;
auxdata.i0 = i0;
auxdata.k1 = k1;
auxdata.k2 = k2;
auxdata.G1 = G1;
auxdata.hh = hh;
auxdata.omega0 = omega0;
auxdata.R = R;
auxdata.M = M;
auxdata.Mtr = Mtr;
auxdata.etaMR = etaMR;
auxdata.etaTR = etaTR;
auxdata.etaCBOX = etaCBOX;
auxdata.HPacc = HPacc;
auxdata.mtilt = mtilt;
auxdata.ki = ki;
auxdata.p1 = p1;
auxdata.p2 = p2;
auxdata.p3 = p3;
auxdata.p4 = p4;
auxdata.pt = pt;
auxdata.Poei = Poei;
auxdata.loss = loss;
auxdata.fv = fv;
auxdata.x2w = x2w;
auxdata.x4r = x4r;
auxdata.tref = tref;
auxdata.x4chng = x4chng;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------- KNOBS -------------------------------%
%-------------------------------------------------------------------%
% %
% %

h0guess = 136; % Altutude guess must be close %30
% for accurate ground effect.
% Iterate if required.

start_aspd = 0;

tauf_g = 15; % Change guess time %2
maxx1g = 8;
maxx2g = 10; % Guess for max fwd airspeed %2
meshtol = 1e-4; % Mesh Tolerance
nlptol = 1e-6; % SNOPT tolerance
deriv_size = 1e-8; % Derivative Step Size
h0_low = 30; % Lowest available altitude
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h0_high = 300; % Highest available altitude

% Objective function weight
% Wt = h0guess/(100*R*tauf_g);

Wt = 0;
WL = .001; %0.01;

% WL = 0;
W1 = .01; %.002;
W2 = .5; %.0125;
auxdata.Wt = Wt;
auxdata.WL = WL;
auxdata.W1 = W1;
auxdata.W2 = W2;

% Max Ct
Ctmax = .015;
% Max rate of change for Ct
dctmax = 1;
dctmin = -1;
% Max TPP angle in deg
TPPlo = deg2rad(-11);
TPPhi = deg2rad(11);
% Max rate of change of TPP angle in deg/sec
dTPPlo = deg2rad(-12);
dTPPhi = deg2rad(12);
%---- Path Bounds (Controls)
% Max accel of Ct*1000
d2ctmin = -21;
d2ctmax = 21; %5.75
% Max accel of TPP angle
d2TPPlo = -deg2rad(15); % 10 15
d2TPPhi = deg2rad(15); % 14.4 15

% %
% %
%-------------------------------------------------------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-------------------------------------------------------------------%
%------------------------ Initial Conditions -----------------------%
%-------------------------------------------------------------------%

% Given initial conditions (Steady Level Flight for this case)
x1_0 = 0;
x3_0 = 1;
x4_0 = h0guess/(10*R);
x5_0 = 0;
u1_0 = 0;
u2_0 = 0;

% Guess remainder of initial conditions
x6_0g = 0.5;
x7_0g = x6_0g;
x8_0g = 6;
x9_0g = 0;

%------------------%
% Initial airspeed %
%------------------%
% Setmanually or by a loop:
x2N = start_aspd*1.68781./(.01*omega0*R);

n = 1;
x2_0 = x2N(n);
%------------------%

%---- Calculate initial engine power states ------------------------%
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y0 = [x7_0g x8_0g x9_0g];
x0 = [x1_0 x2_0 x3_0 x4_0 x5_0];

ic = fsolve(@(x) AH1init_v2o(x,x0,auxdata),y0)
x6_0 = ic(1); x7_0 = x6_0;
x8_0 = ic(2);
x9_0 = ic(3);
x10_0 = 0;
x11_0 = 0;
%%
%---- Pilot Delay --------------------------------------------------%
% Set Pilot delay time:
tdelay = 1.5;
taudelay = tdelay/tref;
auxdata.taudelay = taudelay;
%---- Provide values for d/dt(Ct) and d/dt(alpha) during delay -----%
u1del = 0;
u2del = 0;
% Initial conditions for ode45 integration:
x0 = [x1_0,x2_0,x3_0,x4_0,x5_0,x6_0,x7_0,x8_0,x9_0,x10_0,x11_0];
tauspan = [0 taudelay];

options = odeset(’AbsTol’,1e-5);
[taui,Y] = ode45(@(tau,Y) ah1zdelay13(tau,Y,u1del,u2del,auxdata),tauspan,x0,options);

% Plot pilot delay integration if needed:
% plot(taui,Y(:,1),taui,Y(:,2),taui,Y(:,3),...
% taui,Y(:,4),taui,Y(:,5),taui,Y(:,6),taui,Y(:,7))

%---- Subscript "1" denotes initial conditions post ode45 delay ----%
x1_1 = Y(end,1);
x2_1 = Y(end,2);
x3_1 = Y(end,3);
x4_1 = Y(end,4);
x5_1 = Y(end,5);
x6_1 = Y(end,6);
x7_1 = Y(end,7);
x8_1 = Y(end,8);
x9_1 = Y(end,9);
x10_1 = Y(end,10);
x11_1 = Y(end,11);
x40delta = x4_0-x4_1; % how far the aircraft falls in the delay

%---------------------- End Initial Conditions ---------------------%

%%

%-------------------------------------------------------------------%
%----------------------- Limits on Variables -----------------------%
%-------------------------------------------------------------------%

%---- Bounds on initial state --------------------------------------%
% CHANGE h0_low depending on whether you are finding
% the upper or lower half of HV curve
x4_0lo = h0_low/(10*R);
x4_0hi = h0_high/(10*R);

%---- Non-Dimensional Time Limits ----------------------------------%
tau0 = 0;
% tau0 = taudelay;
taufmin = 1; taufmax = 20;

%---- Path Bounds (States) -----------------------------------------%
% Max Rate of Descent in ft/min
maxROD = 3000;
% Max airspeed (groundspeed) in knots
vmax = 150;
% Max and min rotor RPM (in fraction)
RPMmin = .92; RPMmax = 1.06;
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% Max horizontal distance (ft)
xmax = 10000;

%---- Bounds in Phase 1 -------------------------------------------%
x1lo = 0; x1hi = maxROD/60/(.01*R*omega0);
x2lo = 0; x2hi = vmax*1.68781/(.01*omega0*R);
x3lo = RPMmin; x3hi = RPMmax;
x4lo = 0; x4hi = x4_0hi;
x5lo = 0; x5hi = xmax/(10*R);
x6lo = 0; x6hi = 1; % Engine power 0 to 100%
x7lo = 0; x7hi = 1; % Engine power 0 to 100%
x8lo = 0; x8hi = Ctmax*1000;
x9lo = TPPlo; x9hi = TPPhi;
x10lo = dctmin; x10hi = dctmax;
x11lo = dTPPlo; x11hi = dTPPhi;

u1lo = d2ctmin;
u1hi = d2ctmax;
u2lo = d2TPPlo;
u2hi = d2TPPhi;

%---- Bounds in Phase 2 -------------------------------------------%
% Max TPP angle
TPP1p2 = 5;
TPPp2 = deg2rad(TPP1p2);
x9lop2 = -TPPp2;
x9hip2 = TPPp2;

%---- Bounds on final state ----------------------------------------%
% Max vertical Velocity (ft/sec)
maxfinalsink = 1;
% Max final groundspeed (knots)
maxfinalgrnd = 10;
x1fhi = maxfinalsink/(.01*R*omega0);
x2fhi = maxfinalgrnd*1.68781/(.01*R*omega0);
TPPflo = -3;
TPPfhi = 0;
x9flo = deg2rad(TPPflo);
x9fhi = deg2rad(TPPfhi);
%-------------------------------------------------------------------%
%--------------------- Phase 1 Bounds and Guess --------------------%
%-------------------------------------------------------------------%
bounds.phase(1).initialtime.lower = tau0;
bounds.phase(1).initialtime.upper = tau0;

bounds.phase(1).finaltime.lower = tau0;
bounds.phase(1).finaltime.upper = taufmax;

bounds.phase(1).initialstate.lower = ...
[x1_1, x2_1, x3_1, x4_0lo, x5_1, x6_1, x7_1, x8_1, x9_1, x10_1, x11_1];
bounds.phase(1).initialstate.upper = ...
[x1_1, x2_1, x3_1, x4_0hi, x5_1, x6_1, x7_1, x8_1, x9_1, x10_1, x11_1];

bounds.phase(1).state.lower = ...
[x1lo, x2lo, x3lo, x4lo, x5lo, x6lo, x7lo, x8lo, x9lo, x10lo, x11lo];
bounds.phase(1).state.upper = ...
[x1hi, x2hi, x3hi, x4hi, x5hi, x6hi, x7hi, x8hi, x9hi, x10hi, x11hi];

bounds.phase(1).finalstate.lower = ...
[x1lo, x2lo, x3lo, x4chng, x5lo, x6lo, x7lo, x8lo, x9lop2, x10lo, x11lo];
bounds.phase(1).finalstate.upper = ...
[x1hi, x2hi, x3hi, x4chng, x5hi, x6hi, x7hi, x8hi, x9hip2, x10hi, x11hi];

bounds.phase(1).control.lower = [u1lo, u2lo];
bounds.phase(1).control.upper = [u1hi, u2hi];

bounds.phase(1).integral.lower = 0;
bounds.phase(1).integral.upper = 1000;

131



guess.phase(1).time = [0; tauf_g/2; tauf_g];
guess.phase(1).state(:,1) = [x1_1; maxx1g; 0];
guess.phase(1).state(:,2) = [x2_1; maxx2g; 2]; %[x2_1; maxx2g; 2];
guess.phase(1).state(:,3) = [x3_1; 0.98; 0.95];
guess.phase(1).state(:,4) = [x4_0; x4_1/2; x4_1/4];
guess.phase(1).state(:,5) = [x5_1; 1; 3];
guess.phase(1).state(:,6) = [x6_1; 0; 0];
guess.phase(1).state(:,7) = [x7_1; 1; 1];
guess.phase(1).state(:,8) = [x8_1; x8_1; x8_1];
guess.phase(1).state(:,9) = [x9_1; x9_1; x9_1];
guess.phase(1).state(:,10) = [x10_1; x10_1; x10_1];
guess.phase(1).state(:,11) = [x11_1; x11_1; x11_1];
guess.phase(1).control(:,1) = [1; 1; 1];
guess.phase(1).control(:,2) = [0; 0; 0];

guess.phase(1).integral = 1;

%-------------------------------------------------------------------%
%--------------------- Phase 2 Bounds and Guess --------------------%
%-------------------------------------------------------------------%
bounds.phase(2).initialtime.lower = taufmin;
bounds.phase(2).initialtime.upper = taufmax;

bounds.phase(2).finaltime.lower = taufmin;
bounds.phase(2).finaltime.upper = taufmax;

bounds.phase(2).initialstate.lower = ...
[x1lo, x2lo, x3lo, x4chng, x5lo, x6lo, x7lo, x8lo, x9lop2, x10lo, x11lo];
bounds.phase(2).initialstate.upper = ...
[x1hi, x2hi, x3hi, x4chng, x5hi, x6hi, x7hi, x8hi, x9hip2, x10hi, x11hi];

bounds.phase(2).state.lower = ...
[x1lo, x2lo, x3lo, x4lo, x5lo, x6lo, x7lo, x8lo, x9lop2, x10lo, x11lo];
bounds.phase(2).state.upper = ...
[x1hi, x2hi, x3hi, x4hi, x5hi, x6hi, x7hi, x8hi, x9hip2, x10hi, x11hi];

bounds.phase(2).finalstate.lower = ...
[0, 0, x3lo, 0, x5lo, x6lo, x7lo, x8lo, x9flo, x10lo, x11lo];
bounds.phase(2).finalstate.upper = ...
[x1fhi, x2fhi, x3hi, 0, x5hi, x6hi, x7hi, x8hi, x9fhi, x10hi, x11hi];

bounds.phase(2).control.lower = [u1lo, u2lo];
bounds.phase(2).control.upper = [u1hi, u2hi];

bounds.phase(2).integral.lower = 0;
bounds.phase(2).integral.upper = 10000;

guess.phase(2).time = [tauf_g+.1; tauf_g+.5; tauf_g+1];
guess.phase(2).state(:,1) = [0; 1; 0];
guess.phase(2).state(:,2) = [2; 1; 0]; % [2.1; 1; 0];
guess.phase(2).state(:,3) = [.96; .95; .92];
guess.phase(2).state(:,4) = [x4_1/5; .05; 0];
guess.phase(2).state(:,5) = [3.1; 3.5; 4];
guess.phase(2).state(:,6) = [0; 0; 0];
guess.phase(2).state(:,7) = [.9; 1; 1];
guess.phase(2).state(:,8) = [x8_1; x8_1; x8_1];
guess.phase(2).state(:,9) = [x9lop2; x9lop2; x9fhi];
guess.phase(2).state(:,10) = [x10_1; x10_1; x10_1];
guess.phase(2).state(:,11) = [x11_1; x11_1; x11_1];
guess.phase(2).control(:,1) = [1; 1; 1];
guess.phase(2).control(:,2) = [0; 0; 0];

guess.phase(2).integral = 1;

%-------------------------------------------------------------------------%
%------------- Set up Event Constraints That Link Phases -----------------%
%-------------------------------------------------------------------------%
bounds.eventgroup(1).lower = zeros(1,12);
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bounds.eventgroup(1).upper = zeros(1,12);

% bounds.eventgroup(2).lower = 0;
% bounds.eventgroup(2).upper = 0;

bounds.eventgroup(2).lower = 0.01*ones(1,2);
bounds.eventgroup(2).upper = 12*ones(1,2);

%-------------------------------------------------------------------------%
%-------------------- Provide Mesh Refinement Method ---------------------%
%-------------------------------------------------------------------------%
mesh.method = ’hp-LiuRao-Legendre’;
% mesh.method = ’hp-DarbyRao’;
% mesh.method = ’hp-PattersonRao’;
% mesh.method = ’hp-LiuRao’;
mesh.tolerance = meshtol;
mesh.colpointsmin = 4;
mesh.colpointsmax = 30;
mesh.sigma = 0.5;

%-------------------------------------------------------------------%
%---------- Configure Setup Using the information provided ---------%
%-------------------------------------------------------------------%
setup.name = ’GPOPSAH1Z5’;
setup.functions.continuous = @Cont13;
setup.functions.endpoint = @J13;
setup.displaylevel = 2;
setup.nlp.solver = ’snopt’;
setup.nlp.snoptoptions.tolerance = nlptol; % 1e-09
setup.nlp.snoptoptions.maxiterations = 2000;
setup.mesh = mesh;
setup.bounds = bounds;
setup.guess = guess;
setup.auxdata = auxdata;
setup.derivatives.stepsize1 = deriv_size;
setup.derivatives.supplier = ’sparseFD’;
setup.derivatives.derivativelevel = ’first’;
setup.derivatives.dependencies = ’full’;
setup.scales.method = ’none’; %’automatic-guessUpdate’;
setup.method = ’RPM-Differentiation’;
setup.mesh.maxiterations = 20;

%-------------------------------------------------------------------%
%------------------- Solve Problem Using GPOPS2 --------------------%
%-------------------------------------------------------------------%
output = gpops2(setup);

disp([’Finished with u_0 = ’,num2str(x2N(n)/1.68781*.01*omega0*R)]);

%%
% Extract Solution

Xp1 = output.result.solution.phase(1).state;
Xp2 = output.result.solution.phase(2).state;
X = [Xp1(1:length(Xp1)-1,:); Xp2];

Up1 = output.result.solution.phase(1).control;
u1p1 = Up1(:,1); u2p1 = Up1(:,2);
Up2 = output.result.solution.phase(2).control;
u1p2 = Up2(:,1); u2p2 = Up2(:,2);
U = [Up1(1:length(Up1)-1,:); Up2];
u1 = U(:,1); u2 = U(:,2);

taup1 = output.result.solution.phase(1).time + taudelay;
taup2 = output.result.solution.phase(2).time + taudelay;
tau = [taup1(1:length(taup1)-1);taup2];
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costatesp1 = output.result.solution.phase(1).costate;
costatesp2 = output.result.solution.phase(2).costate;
costates = [costatesp1(1:length(costatesp1)-1,:);costatesp2];

% Print the solution set thus far
u0ans(n) = output.result.solution.phase(1).state(1,2)*.01*omega0*R/1.68781
h0ans(n) = (output.result.solution.phase(1).state(1,4)+x40delta)*10*R

%%
% Save the hamiltonian for analysis
H1 = zeros(size(costatesp1,1),1);
H2 = zeros(size(costatesp2,1),1);
nz1 = zeros(size(taup1,1),1);
nz2 = zeros(size(taup2,1),1);

for j = 1:size(costatesp1,1)

t = taup1(j);
Xx = Xp1(j,:);

XDOT = ah1zdelay13(t,Xx,u1p1(j),u2p1(j),auxdata);
H1(j) = costatesp1(j,:)*XDOT;
nz1(j) = cos(Xx(9)) - 1/g0.*(XDOT(2).*sin(Xx(9))-XDOT(1).*cos(Xx(9)));

end

for j = 1:size(costatesp2,1)

t = taup2(j);
Xx = Xp2(j,:);

XDOT = ah1zdelay13(t,Xx,u1p2(j),u2p2(j),auxdata);
H2(j) = costatesp2(j,:)*XDOT;
nz2(j) = cos(Xx(9)) - 1/g0.*(XDOT(2).*sin(Xx(9))-XDOT(1).*cos(Xx(9)));

end
nz = [nz1(1:length(nz1)-1);nz2];

H = [H1(1:length(H1)-1,:);H2];

maxH = max([max(abs(H1)), max(abs(H2))]);
tau_phxc = taup1(end)+taudelay;
% figure;
% plot(taup1,H1,’o’,taup2,H2,’o’); grid on;
% figure;
% plot(tau,nz)

D.5.2 GPOPS-II® Continuous File

%-------------------------------------------------%
% Begin Function: GPOPSAH1ZCont10.m %
%-------------------------------------------------%
function output = Cont13(input)

const = input.auxdata;
useVRS = const.useVRS;
g0 = const.g0;
m0 = const.m0;
f0z = const.f0z;
f0x = const.f0x;
i0 = const.i0;
k1 = const.k1;
k2 = const.k2;
G1 = const.G1;
M = const.M;
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Mtr = const.Mtr;
etaMR = const.etaMR;
etaTR = const.etaTR;
etaCBOX = const.etaCBOX;
HPacc = const.HPacc;
ki = const.ki;
p1 = const.p1;
p2 = const.p2;
p3 = const.p3;
p4 = const.p4;
pt = const.pt;
Poei = const.Poei;
R = const.R;
hh = const.hh;
fv = const.fv;
x2w = const.x2w;
taudelay = const.taudelay;
W1 = const.W1;
W2 = const.W2;
tref = const.tref;

%-------------------------------------------------%
%--- Phase 1 -------------------------------------%
%-------------------------------------------------%
x1 = input.phase(1).state(:,1);
x2 = input.phase(1).state(:,2);
x3 = input.phase(1).state(:,3);
x4 = input.phase(1).state(:,4);

x6 = input.phase(1).state(:,6);
x7 = input.phase(1).state(:,7);
x8 = input.phase(1).state(:,8);
x9 = input.phase(1).state(:,9);
x10 = input.phase(1).state(:,10);
x11 = input.phase(1).state(:,11);

u1 = input.phase(1).control(:,1);
u2 = input.phase(1).control(:,2);

taup1 = input.phase(1).time + taudelay;

%---- Calculate Ground Effect --------------------%
z = max(hh+10.*R.*x4,hh);
% Hayden
kg = (0.9926 + 0.03794.*(z./(2*R)).^-2).^(2/3);
kg(z>(2*R)) = 1;

%---- Calculate Washout --------------------------%
fw = 1-1/x2w.*abs(x2);
fw(x2>x2w) = 0;

%---- Aerodynamic Model---------------------------%
% Calculate Johnson’s mux = Vx_rotor/vh, muz = -Vz_rotor/vh
% updated with revised equations for mu
mux = 0.4472./(x3.*sqrt(x8)).*(x2.*cos(x9) + x1.*sin(x9));
muz = 0.4472./(x3.*sqrt(x8)).*(x2.*sin(x9) - x1.*cos(x9));

lam_i_J = ones(length(x1),1);

for m = 1:length(x1)
% Call getInducedVelocityVRS.m to obtain lambda_i
lam_i_J(m) = getInducedVelocityVRS3(mux(m),muz(m),useVRS);
end

% lam_i = zeros(length(x1),1);
% for mm = 1:length(x1)
% if (2*muz(mm)+3)^2+mux(mm)^2 > 1.0
% lambda = newtonraphsonlambda(mux(mm),muz(mm));
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% lam_iJ = lambda-muz(mm);
% lam_i(mm) = 0.0224.*lam_iJ.*(x8(mm)).^.5;
% else
% lam_i(mm) = muz(mm)*(0.373*muz(mm)^2+0.598*mux(mm)^2-1.991);
% end
% end

% Regular mu, and lambda_i
mu = 0.01./x3.*(x2.*cos(x9) + x1.*sin(x9));
lam_i = 0.0224.*lam_i_J.*(x8).^.5;

%---- End Aerodynamic Model-----------------------%

%---- Calculate Power Requred -------------------%
% Main Rotor
Cp_mr = ki.*lam_i.*x8./1000 + p1.*(1+4.65.*mu.^2) + p2.*mu.^3 - p3.*x1./x3.^3;
Pr_mr = 1/M.*p4.*Cp_mr.*x3.^3;
% Tail Rotor
Pr_tr = (1-1.2*mu).*1./Mtr.*sqrt(Pr_mr.^3./(pt.*x3.^3));

% Total P_req including accessories and losses
Pr = (Pr_mr./etaMR+Pr_tr./etaTR+HPacc.*550)./etaCBOX;
pr1 = Pr./Poei;

%--- Calculate Governed Engine Power Available --%
p2g = min(pr1 - G1.*(x3-1),1);
p2g(p2g<0) = 0;

%---- Calculate Derivatives ----------------------%
dx1p = g0 - m0.*x3.^2.*x8.*(kg-fv.*fw).*cos(x9) - ...

f0z.*x1.*sqrt(x1.^2+x2.^2);
dx2p = m0.*x3.^2.*x8.*(kg-fv.*fw).*sin(x9) - ...

f0x.*x2.*sqrt(x1.^2+x2.^2);
dx3p = i0./x3.*(x6+x7-pr1);
dx4p = -0.1.*x1;
dx5p = 0.1.*x2;
dx6p = -k1.*x6;
dx7p = zeros(length(x1),1);
for nn = 1:length(x1)

if taup1(nn) > .1548
dx7p(nn) = k2.*(p2g(nn)-x7(nn));
end

end
dx8p = tref.*x10;
dx9p = tref.*x11;
dx10p = tref.*u1;
dx11p = tref.*u2;
output(1).dynamics = [dx1p, dx2p, dx3p, dx4p, dx5p, ...

dx6p, dx7p, dx8p, dx9p, dx10p, dx11p];
output(1).integrand = W1.*u1.^2 + W2.*u2.^2;

% U1 = sum(W1.*u1.^2)
% U2 = sum(W2.*u2.^2)
%-------------------------------------------------%
%--- Phase 2 -------------------------------------%
%-------------------------------------------------%
x1 = input.phase(2).state(:,1);
x2 = input.phase(2).state(:,2);
x3 = input.phase(2).state(:,3);
x4 = input.phase(2).state(:,4);

x6 = input.phase(2).state(:,6);
x7 = input.phase(2).state(:,7);
x8 = input.phase(2).state(:,8);
x9 = input.phase(2).state(:,9);
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x10 = input.phase(2).state(:,10);
x11 = input.phase(2).state(:,11);

u1 = input.phase(2).control(:,1);
u2 = input.phase(2).control(:,2);

taup2 = input.phase(2).time + taudelay;

%---- Calculate Ground Effect --------------------%
z = max(hh+10.*R.*x4,hh);
% Hayden
kg = (0.9926 + 0.03794.*(z./(2*R)).^-2).^(2/3);
kg(z>(2*R)) = 1;

%---- Calculate Washout --------------------------%
% fw = max(1-x2./x2w,0);
% fw = 1;
fw = 1-1/x2w.*abs(x2);
fw(x2>x2w) = 0;
%---- Aerodynamic Model---------------------------%
% Calculate Johnson’s mux = Vx_rotor/vh, muz = -Vz_rotor/vh
% updated with revised equations for mu
mux = 0.4472./(x3.*sqrt(x8)).*(x2.*cos(x9) + x1.*sin(x9));
muz = 0.4472./(x3.*sqrt(x8)).*(x2.*sin(x9) - x1.*cos(x9));

lam_i_J = ones(length(x1),1);

for m = 1:length(x1)
% Call getInducedVelocityVRS.m to obtain lambda_i
lam_i_J(m) = getInducedVelocityVRS3(mux(m),muz(m),useVRS);
end

% Regular mu, and lambda_i
mu = 0.01./x3.*(x2.*cos(x9) + x1.*sin(x9));
lam_i = 0.0224.*lam_i_J.*(x8).^.5;

%---- End Aerodynamic Model-----------------------%

%---- Calculate Power Requred -------------------%
% Main Rotor
Cp_mr = ki.*lam_i.*x8./1000 + p1.*(1+4.65.*mu.^2) + p2.*mu.^3 - p3.*x1./x3.^3;
Pr_mr = 1/M.*p4.*Cp_mr.*x3.^3;
% Tail Rotor
Pr_tr = (1-1.2*mu).*1./Mtr.*sqrt(Pr_mr.^3./(pt.*x3.^3));

% Total P_req including accessories and losses
Pr = (Pr_mr./etaMR+Pr_tr./etaTR+HPacc.*550)./etaCBOX;
pr1 = Pr./Poei;

%--- Calculate Governed Engine Power Available --%
p2g = min(pr1 - G1.*(x3-1),1);
p2g(p2g<0) = 0;

%---- Calculate Derivatives ----------------------%
dx1p = g0 - m0.*x3.^2.*x8.*(kg-fv.*fw).*cos(x9) - ...

f0z.*x1.*sqrt(x1.^2+x2.^2);
dx2p = m0.*x3.^2.*x8.*(kg-fv.*fw).*sin(x9) - ...

f0x.*x2.*sqrt(x1.^2+x2.^2);
dx3p = i0./x3.*(x6+x7-pr1);
dx4p = -0.1.*x1;
dx5p = 0.1.*x2;
dx6p = -k1.*x6;
dx7p = zeros(length(x1),1);
for nn = 1:length(x1)

if taup2(nn) > .1548
dx7p(nn) = k2.*(p2g(nn)-x7(nn));
end
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end
dx8p = tref.*x10;
dx9p = tref.*x11;
dx10p = tref.*u1;
dx11p = tref.*u2;
output(2).dynamics = [dx1p, dx2p, dx3p, dx4p, dx5p, ...

dx6p, dx7p, dx8p, dx9p, dx10p, dx11p];

output(2).integrand = W1.*u1.^2+W2.*u2.^2;
% U1 = sum(u1.^2)/100000
% U2 = sum(u2.^2)/10000

%-------------------------------------------------%
% End Function: GPOPSAH1ZCont10.m %
%-------------------------------------------------%

D.5.3 GPOPS-II® Endpoint File

%-----------------------------------------------------%
% Begin Function: GPOPSAH1ZEnd6.m
%-----------------------------------------------------%
function output = J13(input)

Wt = input.auxdata.Wt;
WL = input.auxdata.WL;

% Define Phase 1 initial and final state
tau0{1} = input.phase(1).initialtime;
tauf{1} = input.phase(1).finaltime;
xf{1} = input.phase(1).finalstate;

% Define Phase 2 initial and final state
tau0{2} = input.phase(2).initialtime;
x0{2} = input.phase(2).initialstate;
tauf{2} = input.phase(2).finaltime;

% Event Group 1: Linkage Constraints Between Phases 1 and 2
output.eventgroup(1).event = [x0{2}-xf{1},tau0{2}-tauf{1}];

% Event Group 2: Event that enforces phase 2 time > phase 1 time
output.eventgroup(2).event = [tauf{1}-tau0{1},tauf{2}-tau0{2}];

% Define the Initial Cost
phi = input.phase(1).initialstate(4);

% Define the Running Cost
L = input.phase(1).integral + input.phase(2).integral;

% phi
% weightedtauf = Wt*tauf{2}
% L
% weightedrunningcost = WL*L

% Objective Function
output.objective = phi + Wt*tauf{2} + WL*L;
% output.objective = phi + W*tauf{2};

%-----------------------------------------------------%
% End Function: GPOPSAH1ZEnd6.m
%-----------------------------------------------------%
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Appendix E. Required Aircraft Parameters

The following inputs are required for the algorithm.

Table E.1. Required Aircraft Parameters

Gross weight
Nominal rotor angular velocity
Rotor polar moment of inertia
Rotor solidity ratio
Main rotor blade average drag coefficient
Main rotor diameter
Tail rotor diameter
Root cutout (if applicable)
Tail rotor moment arm
Main rotor hub height
Equivalent horizontal
flat plate drag area
Equivalent vertical
flat plate drag area
Equivalent vertical flat plate
drag area under rotor disc
Power required for accessories
Gearbox efficiency factors
Single engine power rating
for OEI flight
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Table E.2. Parameters used to Match Dynamic Model to Flight Test Data

Estimate for engine control unit gain
Estimates for engine time constants
Estimate for airspeed at which rotorwash
no longer impacts majority of fuselage
Estimate for main rotor efficiency
Estimate for tail rotor efficiency
Estimate for induced velocity
correction factor
Estimate for flat plate drag
correction factor
Estimate for good engine
response delay
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